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1 Introduction
Theorem 1.1. Consider this paper as instructions for authors.

Proof: Follows directly.

Each section, including the introduction should be numbered, with formulas numbered
in the right margin.

N = {1, 2, 3, . . .} (1)
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N2 = {2, 4, 6 . . .} (2)

Z = N ∪ −N ∪ {0}

Theorem 1.2. For given sets we have N2 ⊂ N ⊂ Z.

Proof: Since there holds

1 = sin2 x + cos2 x

= −eiπ, (3)

the theorem does not follow from the previous result.

Proposition 1.3. Add a proposition like this

Lemma 1.4. Add a lemma if necessary

Corollary 1.5. Add a Corollary if necessary

2 Main Results
Theorem 2.1. Consider this paper as instructions for authors.

Remark 2.2. IJAGT have No-Page Limit for Research Papers

Theorem 2.3. Consider this paper as instructions for authors.

Theorem 2.4. For any connected graph G, γr(G) + κ(G) = 2n − 6 if and only if G

is isomorphic to any one of the following graphs (i) K1,6 (ii) K3,2 (iii) K6 (iv) B(2, 1)
(v) K3(2, 0, 0) (vi) C4(2) (vii) C4(3) (viii) P5 (ix) C3(1, 1, 0) (x) K5 − Y where Y is a
matching in K5 (xi) K6 − M where M is a perfect matching in K6.
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Proof: Let γr(G) + κ(G) = 2n − 6. Then there are five cases to consider (i) γr(G) = n

and κ(G) = n−6 (ii) γr(G) = n−2 and κ(G) = n−4 (iii) γr(G) = n−3 and κ(G) = n−3
(iv) γr(G) = n − 4 and κ(G) = n − 2 (v) γr(G) = n − 5 and κ(G) = n − 1.

Case 1. γr(G) = n and κ(G) = n − 6

Then G is a star which gives κ(G) = 1 = n−6 and hence n = 7. Then G is isomorphic
to K1,6.

Case 2. γr(G) = n − 2 and κ(G) = n − 4

Then n−4 ≤ δ(G). If δ(G) = n−1 then G is a complete graph which is a contradiction
to κ(G) = n − 4.

If δ(G) = n − 2 then G is isomorphic to Kn − Y where Y is a matching in G. Hence
γr(G) ≤ 2. Then n ≤ 4 which is a contradiction to κ(G) = n − 4. Suppose δ(G) = n − 3.
Let X = {v1, v2, · · · , vn−4} be a minimum vertex cut of G and let V −X = {x1, x2, x3, x4}.

If ⟨V − X⟩ contains at least one isolated vertex then δ(G) ≤ n − 4 which is a con-
tradiction. Hence ⟨V − X⟩ is isomorphic to K2 ∪ K2. Also every vertex of V − X is
adjacent to all the vertices of X. Then X is a restrained dominating set of G. Hence
γr(G) ≤ n − 4 which is a contradiction. Thus δ(G) = n − 4.

Sub Case 2.1. ⟨V − X⟩ = K4

Then every vertex of V − X is adjacent to all the vertices in X. Suppose E(⟨X⟩) = ϕ.
Then |X| ≤ 4 and hence G is isomorphic to Ks,4, 1 ≤ s ≤ 4. But γr(G) + κ(G) ̸= 2n − 6.

Suppose E(⟨X⟩) ̸= ϕ. If any one of the vertex in X say v1 is adjacent to all the
vertices in X and hence γr(G) = 1. Then n = 3 which is impossible. Hence every vertex
in X is not adjacent to at least one vertex in X. Hence γr(G) = 2. Then n = 4 which is
also impossible.

Sub Case 2.2. ⟨V − X⟩ = P3 ∪ K1

Drawings should be prepared as Postscript files. Here is an example:
The link for download the software is https://sourceforge.net/projects/texcad/
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Complete graph with 4 vertices

3 Title of the third section
References (see [1], or [2, 3]) should be listed alphabetically and numbered consecutively
at the end of manuscript.
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