Title of the paper

C. Sivagnanam

Department of General Requirements University of Technology and Applied Sciences - Sur Sultanate of Oman choshi71@gmail.com

$M.P.\,Kulandaivel$

Mathematics Section Department of Information Technology University of Technology and Applied Sciences - Al Mussanah Sultanate of Oman mpkoman@gmail.com

Abstract

Abstract not exceeding 250 words, which can be read independently of the paper.

Key words: Dominating set, Connectivity

2010 Mathematics Subject Classification : 05C40, 05C69

1 Introduction

Theorem 1.1. Consider this paper as instructions for authors.

Proof: Follows directly.

Each section, including the introduction should be numbered, with formulas numbered in the right margin.

(1)

$$\mathbb{N} = \{1, 2, 3, \ldots\}$$

* Corresponding Author: M.P. Kulandaivel

 Ψ Received on June 01, 2022 / Revised on June 01, 2022 / Accepted on June 01, 2022

$$\mathbb{N}_2 = \{2, 4, 6 \dots\}$$
(2)

$$\mathbb{Z} = \mathbb{N} \cup -\mathbb{N} \cup \{0\}$$

Theorem 1.2. For given sets we have $\mathbb{N}_2 \subset \mathbb{N} \subset \mathbb{Z}$.

Proof: Since there holds

$$1 = \sin^2 x + \cos^2 x$$

= $-e^{i\pi}$, (3)

the theorem does not follow from the previous result.

Proposition 1.3. Add a proposition like this

Lemma 1.4. Add a lemma if necessary

Corollary 1.5. Add a Corollary if necessary

2 Main Results

Theorem 2.1. Consider this paper as instructions for authors.

Remark 2.2. IJAGT have No-Page Limit for Research Papers

Theorem 2.3. Consider this paper as instructions for authors.

Theorem 2.4. For any connected graph G, $\gamma_r(G) + \kappa(G) = 2n - 6$ if and only if G is isomorphic to any one of the following graphs (i) $K_{1,6}$ (ii) $K_{3,2}$ (iii) K_6 (iv) B(2,1) (v) $K_3(2,0,0)$ (vi) $C_4(2)$ (vii) $C_4(3)$ (viii) P_5 (ix) $C_3(1,1,0)$ (x) $K_5 - Y$ where Y is a matching in K_5 (xi) $K_6 - M$ where M is a perfect matching in K_6 .

Proof: Let $\gamma_r(G) + \kappa(G) = 2n - 6$. Then there are five cases to consider (i) $\gamma_r(G) = n$ and $\kappa(G) = n - 6$ (ii) $\gamma_r(G) = n - 2$ and $\kappa(G) = n - 4$ (iii) $\gamma_r(G) = n - 3$ and $\kappa(G) = n - 3$ (iv) $\gamma_r(G) = n - 4$ and $\kappa(G) = n - 2$ (v) $\gamma_r(G) = n - 5$ and $\kappa(G) = n - 1$.

Case 1. $\gamma_r(G) = n$ and $\kappa(G) = n - 6$

Then G is a star which gives $\kappa(G) = 1 = n - 6$ and hence n = 7. Then G is isomorphic to $K_{1,6}$.

Case 2. $\gamma_r(G) = n - 2$ and $\kappa(G) = n - 4$

Then $n-4 \leq \delta(G)$. If $\delta(G) = n-1$ then G is a complete graph which is a contradiction to $\kappa(G) = n-4$.

If $\delta(G) = n - 2$ then G is isomorphic to $K_n - Y$ where Y is a matching in G. Hence $\gamma_r(G) \leq 2$. Then $n \leq 4$ which is a contradiction to $\kappa(G) = n - 4$. Suppose $\delta(G) = n - 3$. Let $X = \{v_1, v_2, \dots, v_{n-4}\}$ be a minimum vertex cut of G and let $V - X = \{x_1, x_2, x_3, x_4\}$.

If $\langle V - X \rangle$ contains at least one isolated vertex then $\delta(G) \leq n - 4$ which is a contradiction. Hence $\langle V - X \rangle$ is isomorphic to $K_2 \cup K_2$. Also every vertex of V - X is adjacent to all the vertices of X. Then X is a restrained dominating set of G. Hence $\gamma_r(G) \leq n - 4$ which is a contradiction. Thus $\delta(G) = n - 4$.

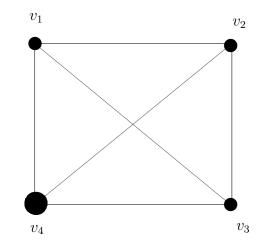
Sub Case 2.1. $\langle V - X \rangle = \overline{K_4}$

Then every vertex of V - X is adjacent to all the vertices in X. Suppose $E(\langle X \rangle) = \phi$. Then $|X| \leq 4$ and hence G is isomorphic to $K_{s,4}, 1 \leq s \leq 4$. But $\gamma_r(G) + \kappa(G) \neq 2n - 6$.

Suppose $E(\langle X \rangle) \neq \phi$. If any one of the vertex in X say v_1 is adjacent to all the vertices in X and hence $\gamma_r(G) = 1$. Then n = 3 which is impossible. Hence every vertex in X is not adjacent to at least one vertex in X. Hence $\gamma_r(G) = 2$. Then n = 4 which is also impossible.

Sub Case 2.2. $\langle V - X \rangle = P_3 \cup K_1$

Drawings should be prepared as Postscript files. Here is an example: The link for download the software is https://sourceforge.net/projects/texcad/



Complete graph with 4 vertices

3 Title of the third section

References (see [1], or [2,3]) should be listed alphabetically and numbered consecutively at the end of manuscript.

Acknowledgement

The authors would like to thank organizers for a beautiful conference.

References

- [1] G. Chartrand and L. Lesniak, Graphs and Digraphs, CRC, (2005).
- [2] G.S. Domke, J.H. Hattingh, S.T. Hedetniemi, R.C. Laskar and L.R. Markus, Restrained domination in graphs, Discrete Mathematics, 203 (1999) 61-69.
- [3] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, (1998).
- [4] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs-Advanced Topics, Marcel Dekker, Inc., New York, (1998).
- [5] J. Paulraj Joseph and S. Arumugam, Domination and Connectivity in graphs, International Journal of Management and Systems, 8 (1992), 233 - 236.
- [6] P. Selvaraju and M.P. Kulandaivel, Restrained domination number and Connectivity of a graph, Proceedings of the International Conference on Mathematics and Computer Science, Loyola college (Autonomous), Chennai, Tamilnadu, India, 1 (2009), 72 - 74.