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Abstract

Gutman was the first to introduce the energy of a graph G. With this motivation we
newly defined a matrix called divisor degree matrix and from that we obtained divisor
degree energy of a simple graph G. In this paper, we obtain the bounds for the spectral
radius γ1 of divisor degree matrix for graph G. Also, we obtain the bounds for the divisor
degree energy of graph G.
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1 Introduction

There are different types of matrices that are associated with graphs and its energies are studied
in [5, 7, 8, 18, 19, 20]. Let G be a simple graph with n vertices v1, v2, ..., vn and m edges. If
a vertex vi is adjacent to vk, then we write it as vivkεE(G). Let dk be a degree of a vertex vk,
k = 1, 2, ..., n with maximum degree ∆ and minimum degree δ respectively. The adjacency
matrix A(G) of a graph G is a real symmetric matrix with n vertices is defined as aik = 1 if
vivkεE(G) and zero otherwise. Then the n × n matrix has its eigenvalues in non-increasing
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order λ1 ≥ λ2 ≥ ... ≥ λn, where λ1 is the greatest eigenvalue of A(G). Gutman [9] was the
first to introduce the energy of a graph G in 1978 as

E(G) =
n∑
i=1
|λi| .

With this motivation on energy of a graph, we introduced a new matrix of a graph called divisor
degree matrix [13]. The divisor degree matrix DD(G) of a graph G is a real symmetric matrix
with n vertices is defined as

ddik =



[
di

dk

]
+
[
dk

di

]
if viandvkare adjacent and di 6= dk

1 if vi and vk are adjacent and di = dk

0 otherwise

where [x] denotes an integral part of real number x. Then the n× n real symmetric matrix has
its eigenvalues in non-increasing order as γ1 ≥ γ2 ≥ ... ≥ γn, where γ1 is the spectral radius
of divisor degree matrix of G. The divisor degree energy (DDE) is defined as

EDD(G) =
n∑
i=1
|γi| . (1)

From this, we observed that the adjacency matrix and divisor degree matrix of a regular graph
are the same. So, we have the following results in [1, 9] as follows:

(i)EDD(Kn) = 2(n− 1).

(ii)EDD(Cn) =


2csc π

2n , if n ≡ 1(mod 2)
4csc π

n
, if n ≡ 2(mod 4)

4cot π
n

, if n ≡ 0(mod 4)

Example 1.1. Consider the graph G.

s s s s

s s

v1 v2 v3 v4

v5v6

The divisor degree matrix of the graph G is
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DD(G)=



0 3 0 0 0 0
3 0 1 0 0 1
0 1 0 4 2 1
0 0 4 0 0 0
0 0 2 0 0 1
0 1 1 0 1 0


The characteristic polynomial of the divisor degree matrix DD(G) is

|γI −DD(G)| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

γ −3 0 0 0 0
−3 γ −1 0 0 −1
0 −1 γ −4 −2 −1
0 0 −4 γ 0 0
0 0 −2 0 γ −1
0 −1 −1 0 −1 γ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
The characteristic polynomial is γ6− 33γ4− 6γ3 + 231γ2 + 36γ − 144 and the divisor degree
eigenvalues of G are γ1 = 4.985, γ2 = 2.923, γ3 = −4.664, γ4 = −3.073, γ5 = −0.920, γ6 =
0.750. Thus, EDD(G) ≈ 17.315.

Further, we defined some definitions, that are needed for the later part of this paper, as
follows:

For a graph G, the divisor degree of a vertex vi denoted by dd(vi) or ddi, is defined in [15]
as

dd(vi) =


∑
i∼k

([
di

dk

]
+
[
dk

di

])
if vi and vk are adjacent

1 if di = dk ; vi and vk are adjacent

0 otherwise

where [x] denotes an integral part of real number x and
∑
i∼k

means summation over all pair

of adjacent vertices vi and vk.

For a graph G, the divisor degree index dd(G) is defined in [15] as

dd(G) =
n∑
i=1

(∑
i∼k

([
di
dk

]
+
[
dk
di

]))
=

n∑
i=1

dd(vi).

For any graph G, we defined in [15] as follows:

(i) δdd(G) = min {dd(v)/vεV (G)} is called minimum divisor degree of G.

(ii)∆dd(G) = max {dd(v)/vεV (G)} is said to be maximum divisor degree of G.

For any graph G, defined in [17] as follows:
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(i) The forgotten topological index is given by

F (G) =
n∑
i=1

d3
i =

∑
vivjεE(G)

(
d2
i + d2

j

)
.

(ii) The modified second Zagreb index is given by

M∗
2 (G) =

∑
vivjεE(G)

1
didj

.

2 Some known and related results for bounds of energy

The following is well known and related results for bounds of energy which are needed for the
later part of this paper to find the bounds for the divisor degree energy of G.

Lemma 2.1. [24] If C is a symmetric matrix of order n with non-increasing eigenvalues ρ1 ≥
ρ2 ≥ ... ≥ ρn, then XTCX ≤ ρ1XTX, for any XεRn − {0}.

Lemma 2.2. [12] Let A = (aik)and B = (bik) be symmetric, non-negative matrices with n
vertices. If B ≤ A, that isbik ≤ aik for all i, k, then ρ1(A) ≤ ρ1(B), where ρ1 is the largest
eigenvalue.

Lemma 2.3. [11] IfG is a simple graph with n vertices andm edges, then λ1(G) ≤
√

2m− n+ 1
with equality holds if and only if G is a star graph or a complete graph.

Lemma 2.4. [15] Let G be a simple and connected graph with n vertices and m edges. Then
dd(G) ≥ 2m with equality holds if G is regular.

Theorem 2.5. [16] If G is a connected graph with n vertices and m edges, then

2m ≤ dd(G) < n(n2 − 2n+ 2).

Theorem 2.6. Let G be a graph with n vertices and m edges, then

n∑
i=1

∑
i∼k

([
di
dk

]
+
[
dk
di

])2
 ≥ 4m2

n
(2)

with equality holds if G ∼= Kn.
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Proof: By Cauchy-Schwarz inequality,

(
n∑
i=1

(∑
i∼k

([
di
dk

]
+
[
dk
di

])))2

≤ n
n∑
i=1

∑
i∼k

([
di
dk

]
+
[
dk
di

])2


By Lemma 2.4, inequality (2) follows.
If G ∼= Kn, then m = 0 and so

∑n
i=1

(∑
i∼k

([
di

dk

]
+
[
dk

di

])2
)

= 0.

3 Bounds for spectral radius of divisor degree matrix of graphs

Theorem 3.1. If G is a simple graph with n vertices, then

γ1 <
√
n(n− 1)(n− 2). (3)

Proof: Let ith row and ith row sum of DD be DDi and ddi respectively. Let the eigenvector
of DD with unit length be X = (x1, x2, ..., xn)T and its corresponding eigenvalue is γ1(DD).
Let the vector X(i) is obtained from X for i = 1, 2, ..., n, by changing those components xk by
zero such that aik is zero. Now, for i = 1, 2, ..., n, (DD)X(i) = γ1X, , then

DDi X(i) = DDi X = γ1(DD) xi

Using Cauchy-Schwarz inequality,

γ2
1(DD) x2

i = |DDiX(i)|2 ≤ |DDi| |X(i)|2

≤ ddi

1−
∑

k:aik=0
x2
k


Adding the above inequalities and using Theorem 2.5, we get

γ2
1(DD) ≤

n∑
i=1

ddi −
n∑
i=1

ddi
∑

k:aik=0
x2
k

< n(n2 − 2n+ 2)−
n∑
i=1

ddi
∑

k:aik=0
x2
k

Now
n∑
i=1

ddi
∑

k:aik=0
x2
k ≥

n∑
i=1

ddi x
2
i +

n∑
i=1

ddi
∑

k:aik=0
x2
k
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≥
n∑
i=1

ddi x
2
i +

n∑
i=1

(n2 − ddi) x2
i ≥ n2

γ2
1(DD) < n(n2 − 2n+ 2)− n2

and inequality (3) follows.

Theorem 3.2. If G is a simple graph of order n with maximum divisor degree ∆dd, then

γ1 >
F − 2M∗

2
n ∆2

dd

(4)

where F and M∗
2 are forgotten topological index and modified second Zagreb index respec-

tively.

Proof: Let the unit vector be Y = (y1, y2, ..., yn)T , where Y belongs to Rn. So

Y TDD(G)Y =
∑

vivkεE(G)

([
di
dk

]
+
[
dk
di

])
xixk

>
∑

vivkεE(G)

([
di
dk

]
+
[
dk
di

]
− 2

)
xixk

>
∑

vivkεE(G)

([
di
dk

]
+
[
dk
di

])
xixk −

∑
vivkεE(G)

2xixk

>
∑

vivkεE(G)
2xixk +

∑
vivkεE(G)

(di − dk)2

didk
xixk −

∑
vivkεE(G)

2xixk

>
∑

vivkεE(G)

(di − dk)2

didk
xixk >

F − 2M∗
2

n ∆2 >
F − 2M∗

2
n ∆2

dd

Using Lemma 2.1, inequality (4) follows.

Theorem 3.3. Let γ1 be the spectral radius of divisor degree matrix of a simple graph G with
n vertices and m edges. Then

γ1 ≤
[
n− 1 + 1

n− 1

]√
2m− n+ 1 (5)

with equality holds if and only if G is a star graph.

Proof: Let vivkεE(G).
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(
di
dk

+ dk
di

)
≤ ∆

δ
+ δ

∆ ≤ n− 1 + 1
n− 1

which equals if and only if di = n− 1, dk = 1 or dk = n− 1, di = 1.
If ρ1 is the greatest eigenvalue of the matrix

([
di

dk

]
+
[
dk

di

])
A(G), then by

Lemma 2.2, 2.3 and γ1 ≤ ρ1, inequality (5) follows.

4 Some lower and upper bounds of divisor degree energy of Graphs
In this section, we obtain some lower and upper bounds for the divisor degree energy EDD of
graph G.

Theorem 4.1. Let DD be the divisor degree matrix of a simple graph G(n,m), with absolute
determinant value ∆, then

EDD(G) ≥
√

4m2

n
+ n(n− 1)∆ 2

n . (6)

Proof: From Eq. (1) We have (EDD(G))2 = (∑n
i=1 |γi|)

2 = ∑n
i=1 |γi|

∑n
i=1 |γi|

=
n∑
i=1

γ2
i +

n∑
i6=k
|γi| |γi| (7)

We know that for non-negative integer, the geometric mean is not larger than the arithmetic
mean,

1
n(n− 1)

n∑
i6=j
|γi| |γi| ≥ (Πi6=j |γi| |γi|)

1
n(n−1) ≥

(
(Πi6=j |γi|)2(n−1)

) 1
n(n−1) = ∆ 2

n

Eq. (7) becomes,

(EDD(G))2 ≥
n∑
i=1

γ2
i + n(n− 1)∆ 2

n

=
n∑
i=1

∑
i∼k

([
di
dk

]
+
[
dk
di

])2
+ n(n− 1)∆ 2

n

≥ 4m2

n
+ n(n− 1)∆ 2

n

and inequality (6) follows.

Theorem 4.2. For a complete graph Kn, (n − 1) is a eigenvalue of divisor degree matrix of
Kn and EDD(Kn) ≤ EDD(K1,n−1).
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Proof: We have

|γ I −DD(Kn)| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

γ −1 −1 ... −1
−1 γ −1 ... −1
−1 −1 γ ... −1
... ... ... ... ...

−1 −1 −1 ... γ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Now by using elementary operationC1 → C1+C2+...+Cn, we get the factor of |γ I −DD(Kn)|
is (γ − (n− 1)). Thus (n− 1) is a eigenvalue of DD(Kn).
Since tr(DD(Kn))2 = n(n− 1), we have

(EDD(Kn))2 ≤ n2(n− 1)

Also
(EDD(K1,n−1))2 ≤ 2n(n− 1)3

Therefore, EDD(Kn) ≤ EDD(K1,n−1).

Theorem 4.3. Let γi be any eigenvalue of divisor degree matrix of a simple graph G with n
vertices. Then for any i, we have |γi| ≤ (n− 1)2

√
2
n
.

Proof: We have
tr(DD(K1,n−1))2 = 2(n− 1)3

Therefore for any graph G with n vertices, the divisor degree matrix of G has its eigenvalues
γ1, γ2, ..., γn, we have

n∑
i=1
|γi|2 ≤ 2(n− 1)3

Using Cauchy-Schwarz inequality, we have

∑
i6=k
|γi|2 = (n− 1)

∑
i6=k
|γi|2

γ2
i ≤ (n− 1)(2(n− 1)3 − γ2

i )

Therefore, |γi| ≤ (n− 1)2
√

2
n

.

Theorem 4.4. For a wheel graph Wn with n(n ≥ 4) vertices,

tr(DD(Wn))2 = 2 (n− 1)
(

1 +
[
n−1

3

]2)
and EDD(Wn) <

√
2n(n− 1)

(
1 +

[
n−1

3

]2)
.
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Proof: The divisor degree matrix of Wn is

DD(Wn) =



0 1 0 ... 0 1
[
n−1

3

]
1 0 1 ... 0 0

[
n−1

3

]
0 1 0 ... 0 0

[
n−1

3

]
... ... ... ... ... ... ...

0 0 0 ... 0 1
[
n−1

3

]
1 0 0 ... 1 0

[
n−1

3

]
[
n−1

3

] [
n−1

3

] [
n−1

3

]
...

[
n−1

3

] [
n−1

3

]
0



tr(DD(Wn))2 = (n− 1)
(

2 +
[
n− 1

3

]2)
+ (n− 1)

[
n− 1

3

]2

= 2(n− 1)
(

1 +
[
n− 1

3

]2)
n∑
i=1

γ2
i = 2(n− 1)

(
1 +

[
n− 1

3

]2)

Using Cauchy-Schwarz inequality,

n∑
i=1

γi <

√√√√2n(n− 1)
(

1 +
[
n− 1

3

]2)

Hence, EDD(Wn) <
√

2n(n− 1)
(

1 +
[
n−1

3

]2)
.

Theorem 4.5. For a path graph Pn with n(n ≥ 4) vertices, tr(DD(Pn))2 = 2 (n+ 5) and
EDD(Pn) <

√
2n (n+ 5).

Proof: The divisor degree matrix of Pn is
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DD(Pn) =



0 2 0 · · · 0 0 0
2 0 1 · · · 0 0 0
0 1 0 · · · 0 0 0
... . . . ...
0 0 0 · · · 0 1 0
0 0 0 · · · 1 0 2
0 0 0 · · · 0 2 0


tr(DD(Pn))2 = 18 + 2(n− 4) = 2(n+ 5).

Using Cauchy-Schwarz inequality,

n∑
i=1

γi <
√

2n(n+ 5)

Therefore,EDD(Pn) <
√

2n(n+ 5) (n ≥ 4).

Theorem 4.6. If Pn is path graph of order n(n ≥ 4), then EDD(L(Pn)) <
√

2(n− 1)(n+ 4)
where L(Pn) is a line graph of Pn.

Proof: If Pn is a path graph of order n, then Pn − e is the corresponding line graph of Pn of
order n− 1. That is, L(Pn) ∼= Pn−1.
Hence by using Theorem 4.5, we get EDD(L(Pn)) <

√
2(n− 1)(n+ 4).

Theorem 4.7. If Sn is star graph of order n, then EDD(L(Sn)) = 2(n − 2)where L(Sn) is a
line graph of Sn.

Proof: If Sn is a star graph of order n, then the vertex u is adjacent to n − 1 vertices, which
means u has an edge incident with every other n − 1 vertices. Thus the corresponding line
graph of Sn is a complete graph of order n− 1. That is, L(Sn) ∼= Kn−1.
Hence EDD(L(Sn)) = 2(n− 2), where EDD(Kn−1) = 2(n− 1).

Theorem 4.8. If G(n,m) is a simple graph. Then

EDD(G) ≤ 2m
n

+

√√√√√(n− 1)


n∑
i=1

∑
i∼k

([
di
dk

]
+
[
dk
di

])2
− 4m2

n2

. (8)
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Proof: We have
EDD(G) =

n∑
i=1
|γi| = γ1 +

n∑
i=2
|γi|

Using Cauchy-Schwarz inequality,

n∑
i=2
|γi| ≤

√√√√(n− 1)
n∑
i=2

γ2
i

EDD(G) ≤ γ1 +

√√√√√(n− 1)


n∑
i=1

∑
i∼k

([
di
dk

]
+
[
dk
di

])2
− γ2

1


Set γ1 = x. Define the function

f(x) = x+

√√√√√(n− 1)


n∑
i=1

∑
i∼k

([
di
dk

]
+
[
dk
di

])2
− x2


From

n∑
i=1

γ2
i =

n∑
i=1

∑
i∼k

([
di
dk

]
+
[
dk
di

])2


we get,

x2 = γ2
1 ≤

n∑
i=1

∑
i∼k

([
di
dk

]
+
[
dk
di

])2


x ≤

√√√√√ n∑
i=1

∑
i∼k

([
di
dk

]
+
[
dk
di

])2


Now, f ′(x) = 0 implies,

x =

√√√√√ 1
n

n∑
i=1

∑
i∼k

([
di
dk

]
+
[
dk
di

])2


Therefore, the interval of a decreasing function f(x) is

√√√√√ 1
n

n∑
i=1

∑
i∼k

([
di
dk

]
+
[
dk
di

])2
 ≤ x ≤

√√√√√ n∑
i=1

∑
i∼k

([
di
dk

]
+
[
dk
di

])2

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Using Theorem 2.6, we get

γ1 ≥
√

4m2

n2 = 2m
n

f(γ1) ≤ f
(2m
n

)
and inequality (8) follows.
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