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Abstract

Consider that G is a finite simple connected graph. The first and second refor-
mulated Zagreb indices of a graph are obtained from the Zagreb indices by using
edge degrees instead of vertex degrees, where the degree of an edge is taken as the
sum of degrees of vertices incident with the edge minus 2. A graph G is called an
apex tree[12] if it has a vertex x such that G− x is a tree. The graph G is k-apex
tree for any integer k ≥ 1 if there exist a subset X of V (G) of cardinality k such
that G − X is a tree and for any Y contained in V (G) and cardinality of Y less
than k, G − Y is not a tree. In this work we have determined upper and lower
bounds of EM1(G) in k-apex trees.
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1 Introduction
Let G be a simple connected graph with vertex set V (G) and edge set E(G). In chemical
graph theory, in 1972 the first and second Zagreb indices were presented by Gutman and
Trinajstić to examine the structure-dependency of the total π-electron energy (ε) in a
paper [8] and were defined as

M1(G) =
∑

v∈V (G)
d(v)2 =

∑
uv∈E(G)

(d(u) + d(v))

M2(G) =
∑

uv∈E(G)
d(u)d(v)

where d(v) is the degree of the vertex v. Applications of Zagreb indices in QSPR
were exposed by modeling the structure-boiling point associated with C3 − C8 alkanes
using the CROMRsel method [24]. A large number of work has been done on these two
indices. In [7] a history of these descriptors along with their mathematical properties are
exhibited. In 2004 Miličević et al.[2] reformulated the Zagreb indices in terms of edge
degrees instead of vertex degrees, where the degree of an edge e = uv is described as
d(e) = d(u) + d(v) − 2. Hence, first and second reformulated Zagreb indices of a graph
G are defined as

EM1(G) =
∑

e∈E(G)
d(e)2

EM2(G) =
∑
e∼f

d(e)d(f)

where e ∼ f means edges e and f are adjacent. Some mathematical properties of
reformulated Zagreb indices have been presented in [5]. Ji et al. [22, 23] explored the
bounds of these indices for acyclic, unicyclic, bicyclic and tricyclic graphs. All graphs
considered in this paper are simple, finite and connected. In a graph G, degree of a vertex
v, is the number of edges incident to the vertex v and is denoted by d(v) or dG(v). A
vertex of degree one is called a pendant vertex. The minimum degree of a graph G is the
minimum degree of its vertices and is denoted by δ(G). Neighbour of a vertex u is the set
of vertices adjacent to u and is denoted by N(u). We can attain subgraph of a graph by
removing edges and vertices. If x is a vertex of G, then G− x is the subgraph obtained
from G by deleting the vertex x along with the edges incident to x. In general, if S is
any set of vertices in G, we symbolize by G − S the subgraph acquired by deleting the
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vertices in S and all edges incident to any of them. In graph theory a connected acyclic
graph of order n is called a tree and is denoted by Tn. A star is a tree consisting of
one vertex adjacent to all other vertices. An n-vertex star is a complete bipartite graph
K(1, n− 1) and is denoted by Sn [3]. The join of two vertex-disjoint graphs G and K, is
the graph G+K with V (G+K) = V (G) ∪ V (K) and the edges of G+K are all edges
of graphs G and K and edges obtained by joining each vertex of G with each vertex of
K. An apex graph is a graph that can be formed planar by removing the single vertex.
On the same lines apex trees and k-apex trees were introduced with the name quasi-tree
graphs and k-generalized quasi-tree graphs respectively in [1, 4, 12]. An apex tree G is a
graph that contains a vertex x such that G − x is a tree, this removing vertex is called
an apex vertex. As a tree is always an apex tree therefore a non-trivial apex tree is an
apex tree that itself is not a tree. In short 1-apex tree of order n is a non-trivial apex
tree of order n and the set of 1-apex trees is expressed as T1(n) = T (n). A graph G

is a k-apex tree of order n if for any integer k ≥ 1 there exist a subset X of V (G) of
cardinality k such that G−X is a tree and for any Y contained in V (G) and cardinality
of Y less than k, then G?Y is not a tree. The set of k-apex trees is denoted by Tk(n). In
a k-apex tree an edge whose one end is apex vertex and other end is not an apex vertex is
called an apex edge. References [11, 18, 19] presents upper and lower bounds on weighted
Harary index, Zagreb indices, and Randić index of k-apex trees. Sharp bounds on first
and second multiplicative zagreb indices for t-generalized quasi trees has been computed
in reference [16]. Zeroth-order general Randić index of k-generalized quasi trees has been
calculated in reference [17]

2 Extremal k-Apex Trees for EM1(G)

In the following section we will first compute the upper bounds of the first reformulated
Zagreb index for k-apex trees. The following lemma is proved in [22] by using graph
operations and we prove it in a very simple way.

Lemma 2.1. If T is a tree of order n, then

EM1(T ) ≤ (n− 1)(n− 2)2

and equality holds if and only if T = Sn.
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Proof: For e = uv ∈ E(T )

d(e) = d(u) + d(v)− 2

d(e) = |N(u)|+ |N(v)| − 2

As for a tree N(u) ∩N(v) = ϕ, therefore

deg(e) = |N(u) ∪N(v)| − 2

As for a graph of order n, |N(u) ∪N(v)| ≤ n, therefore

d(e) ≤ n− 2

Hence EM1(T ) is maximum if all edges of T has maximum degree n− 2. We know there
is a unique tree Sn such that d(e) = n− 2 for all e ∈ E(Sn) therefore

EM1(T ) ≤ (n− 1)(n− 2)2

.

The following Lemma easily follows from definition.

Lemma 2.2. If u, v ∈ V (G) are not adjacent, then

EM1(G+ uv) > EM1(G)

Lemma 2.3. [18] If G ∈ T (n), EM1(G) is as large as possible and x is an apex vertex
of G, then:
(a) δ(G) = 2 (b) d(x) = n− 1

Proof: (a) Suppose that δ(G) = 1 and y ∈ V (G) is a pendent vertex, then xy /∈ E(G)
and G + xy ∈ T (n). By Lemma 2.2 EM1(G + xy) > EM1(G), which contradicts our
hypothesis. Now we will show that δ(G) ≤ 2 for this suppose all vertices have degree
greater or equal to three. Now for any vertex v ∈ (G), each vertex in G − v has degree
greater or equal to two, which implies that G− v is not a tree for any v ∈ V (G). Hence
δ(G) = 2.
(b) Let G ∈ T (n), EM1(G) is as large as possible and x be an apex vertex of G.
Suppose to the contrary that d(x) < n − 1, then there is a vertex y ∈ V (G) such that
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xy /∈ E(G). Now G + xy is also in T (n) and EM1(G + xy) > EM1(G) a contradiction,
hence d(x) = n− 1.

Lemma 2.4. [21] The reformulated first Zegreb index G1 +G2 is given by

EM1(G1 +G2) = EM1(G1) + EM1(G2) + 5|V (G1)|M1(G2) + 5|V (G2)|M1(G1)

+ |V (G1)||V (G2)|(|V (G1)|+ |V (G2)| − 2)2 + 8|E(G1)||E(G2)|

+ 4(|V (G1)|+ |V (G2)| − 2)(|V (G1)||E(G2)|+ |V (G2)||E(G1)|)

+ 4|V (G1)|2|E(G2)|+ 4|V (G2))|2|E(G1)| − 8|V (G1)||E(G2)|

− 8|V (G2)||E(G1)|.

Theorem 2.5. If G ∈ T (n) and n ≥ 3, then

EM1(G) ≤ 2(n− 2)(n2 − 3)

and equality holds if and only if G = k1 + Sn−1.

Proof: If G ∈ T (n) and EM1(G) is as large as possible, then by lemma 2.3 we have
G = K1 +Tn−1, where Tn−1 is a tree of order n-1, therefore by using Lemma 2.4 we obtain

EM1(G) = EM1(K1 + Tn−1)

= EM1(K1) + EM1(Tn−1) + 5|V (K1)|M1(Tn−1) + 5|V (Tn−1)|M1(K1)

+ |V (K1)||V (Tn−1)|(|V (K1)|+ |V (Tn−1)| − 2)2 + 8|E(K1)||E(Tn−1)|

+ 4(|V (k1)|+ |V (Tn−1)| − 2)(|V (K1)||E(Tn−1)|+ |V (Tn−1)||E(K1)|)

+ 4|V (K1)|2|E(Tn−1)|+ 4|V (Tn−1)|2|E(K1)|

− 8|V (K1)||E(Tn−1)| − 8|V (Tn−1)||E(K1)|.

Using Lemma 2.1, we get

EM1(K1 + Tn−1) ≤ 2(n− 2)(n2 − 3)

Lemma 2.1 guaranties that equality holds if and only if G = K1 + Sn−1.

Theorem 2.6. If k ≥ 2, n ≥ 2k + 1 and G ∈ Tk(n), then

EM1(G) ≤ (n(k + 1)− k(k + 3) + (k − 1)) (n+ k − 2)2 + k(k + 1)
2 )(2n− 4)2
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and equality holds if and if G = Kk + Sn−k.

Proof: We will prove it by induction on k. We have already proved this property for
k = 1 in theorem 2.5. Now suppose that the result is true for (k − 1)-apex trees. Let
Vk ⊂ V (G) be the set of k-apex vertices. As EM1(G+uv) > EM1(G) for any uv /∈ E(G)
this implies that Vk forms a complete graph and for any u ∈ Vk, d(u) = n − 1, so the
number m of edges of the graph G is

m = k(k + 1)
2 + (k + 1)(n− k − 1)

Let x ∈ Vk and Vk−1 = Vk − x note that d(x) = n− 1, G− x is a (k − 1)-apex trees and

EM1(G− x) =
∑

uv∈E(G−x)
((dG(u)− 1) + (dG(v)− 1)− 2)2

=
∑

uv∈E(G−x)
(dG(u) + dG(v)− 4)2

=
∑

uv∈E(G−x)

(
d2

G(u) + d2
G(v) + 16 + 2dG(u)dG(v)− 8dG(u)− 8dG(v)

)
=

∑
uv∈E(G−x)

(
d2

G(u) + d2
G(v)

)
+ 2

∑
uv∈E(G−x)

dG(u)dG(v)

− 8
∑

uv∈E(G−x)
(dG(u) + dG(v)) + 16(m− n+ 1)

=
∑

uv∈E(G−x)

(
d2

G(u) + d2
G(v)

)
+

∑
xu∈E(G)

(
(n− 1)2 + d2

G(u)
)

−
∑

xu∈E(G)

(
(n− 1)2 + d2

G(u)
)

+ 2
∑

uv∈E(G−x)
dG(u)dG(v)

+ 2
∑

xu∈E(G)
(n− 1)dG(u)− 2

∑
xu∈E(G)

(n− 1)dG(u)

− 8
∑

uv∈E(G−x)
(dG(u) + dG(v))− 8

∑
xu∈E(G)

((n− 1) + dG(u))

+ 8
∑

xu∈E(G)
((n− 1) + dG(u)) + 16(m− n+ 1)

=
∑

uv∈E(G)

(
d2

G(u) + d2
G(v)

)
−

∑
xu∈E(G)

(
(n− 1)2 + d2

G(u)
)

+ 2
∑

uv∈E(G)
dG(u)dG(v)− 2

∑
xu∈E(G)

(n− 1)dG(u)

− 8
∑

uv∈E(G)
(dG(u) + dG(v)) + 8

∑
xu∈E(G)

((n− 1) + dG(u))

+ 16(m− n+ 1)
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=
∑

uv∈E(G)

(
d2

G(u) + d2
G(v)

)
+ 2M2(G)− 8M1(G)

−

(n− 1)3 +
∑

u∈V (G−x)
d2

G(u)
+ 8

(n− 1)2 +
∑

u∈V (G−x)
dG(u)


− 2

(n− 1)
∑

xu∈E(G)
dG(u)

+ 16(m− n+ 1)

EM1(G− x) = EM1(G)− 4m− 2M2(G) + 4M1(G) + 2M2(G)− 8M1(G)

−

(n− 1)3 +
∑

u∈V (G−x)
d2

G(u) + (n− 1)2 − (n− 1)2


+ 8

(n− 1)2 +
∑

u∈V (G−x)
dG(u) + (n− 1)− (n− 1)


− 2

(n− 1)
 ∑

u∈V (G−x)
dG(u) + (n− 1)− (n− 1)


+ 16(m− n+ 1)

= EM1(G)− 4m− 4M1(G)

−

(n− 1)3 +
∑

u∈V (G)
d2

G(u)− (n− 1)2


+ 8

(n− 1)2 +
∑

u∈V (G)
dG(u)− (n− 1)


− 2

(n− 1)
 ∑

u∈V (G)
dG(u)− (n− 1)


+ 16(m− n+ 1)

= EM1(G)− 4m− 4M1(G)−
(
(n− 1)3 +M1(G)− (n− 1)2

)
+ 8

(
(n− 1)2 + (2m− n+ 1)

)
− 2 ((n− 1) (2m− n+ 1))

+ 16(m− n+ 1)

EM1(G) = EM1(G− x) + 4m+ 4M1(G) +
(
(n− 1)3 +M1(G)− (n− 1)2

)
− 8

(
(n− 1)2 + (2m− n+ 1)

)
+ 2 ((n− 1) (2m− n+ 1))− 16(m− n+ 1)

EM1(G) = (k(n− 1)− (k − 1)(k + 2) + (k − 2)) (n+ k − 4)2 + k(k − 1)
2 (2n− 6)2
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+ 4
(
k(k + 1)

2 + (k + 1)(n− k − 1)
)

+ 4
(
(k + 1)(n− 1)2 + (n− k − 1)(k + 1)2

)
− 16

(
k(k + 1)

2 + k(n− k − 2)
)

+
(
(n− 1)2(n+ k − 1) + (n− k − 1)(k + 1)2

)
− 8 ((n− 1)(n+ k − 1) + (n− k − 1)(k + 1))

+ 2
(
K(n− 1)2 + (k + 1)(n− 1)(n− k − 1)

)

EM1(G) = (n(k + 1)− k(k + 3) + (k − 1)) (n+ k − 2)2 + k(k + 1)
2 (2n− 4)2

equality holds if and if G = Kk + Sn−k.

Now we will compute the lower bounds of the first reformulated Zagreb index for
k-apex tress.

3 Some graph operations

In this section we will introduce some graph operations[22], which strictly decreases the
first reformulated Zagreb index of a graph.

Operation I. Suppose G is a nontrivial connected graph as shown in Fig.1, and v is
a given vertex in G. Suppose the graph G has two paths P : vu1u2 . . . uk of length k and
Q : vw1w2 . . . wl of length l. If G′ = G− vw1 + ukw1, we say that G′ is obtained from G

by Operation I.

Operation II. Let G0, as shown in Fig.1, be a nontrivial acyclic subgraph of G with
|V (G0)| = t, and is attached at u1 in graph G. Let x and y be two neighbors of u1

different from vertices in G0. The graph G1 as shown in Fig. 2 is obtained from the
graph G by changing G0 into path. If G′ = G1 − (G1 − u1) + u1u2 + u2u3 + . . .+ uty we
say that G′ is obtained from G by Operation II.

In fact, these operations I and II decrease EM1 of a graph. By the above two graph
operations we get the following two result [22].
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Figure 1: Two graphs G and G′ in Operation I

Figure 2: Graphs G,G′,G1 in Operation II
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Lemma 3.1. If G′ is obtained from G by Operation I as shown in Fig.1, then

EM1(G′) < EM1(G)

Lemma 3.2. If G′ is obtained from G be the graph Operation II as shown in Fig.2, then
we have

EM1(G) > EM1(G′)

Theorem 3.3. If G ∈ Tk(n), k ≥ 1 and n ≥ 5k − 3, then

EM1(G) ≥

4n, if k = 1
4n+ 34k − 34, if k ≥ 2

and equality holds if and only if G has n− 2k+ 2 vertices of degree 2 and 2k− 2 vertices
of degree 3, and any two vertices of degree 3 are non-adjacent.

Proof: First we prove it for 1-apex trees. Let G be a 1-apex tree and x ∈ V (G) be
an apex vertex. If d(x) ≥ 3 then for any edge xu, G − xu is still 1-apex tree and
EM1(G− xu) ≤ EM1(G). Hence for minimum EM1(G), d(x) = 2. By operations I and
II we get an apex tree G′ and it has no pendent edge. The minimum degree of any edge
in G′ is 2, if we have an apex tree whose each edge has degree two then it will be an apex
tree with minimum EM1(G). A cycle is an apex tree with degree of each vertex two and
it is the apex tree with minimum first reformulated Zagreb index.

EM1(G) ≥ EM1(G′) = 4n

Let G be a k-apex tree (k ≥ 2). Let V (G) = {x1, x2, . . . , xk, v1, v2, . . . , vn−k} and
let x1, x2, . . . , xk be the apex vertices. If G1 is the graph obtained from the graph G

by deleting edges xixj, for i 6= j and i, j ∈ {1, 2, 3, . . . , k}, the G1 is a k-apex tree
and EM1(G1) ≤ EM1(G). Suppose that G2 is the graph obtained from G1 by deleting
edges vixj such that dG2(xj) = 2 for each j = 1, 2, . . . , k, and G2 is a k-apex tree then
EM1(G2) ≤ EM1(G1). If G2 has pendent vertices then by operations I and II obtain a
k-apex tree G3 such that EM1(G3) ≤ EM1(G2) and G3 has no pendent vertex. If all
vertices of G3 are of degree 2, then it is not a k-apex tree (k ≥ 2). Therefore G3 has
vertices of degree greater than 2. For minimum EM1, G3 has vertices of degree 2 and 3
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Figure 3: Graph G′

only, and if l is the number of vertices of degree 3, then

3l + 2(n− l) = 2n+ 2k − 2

l = 2k − 2

Hence EM1 will be minimum for n ≥ 5k−3, with 6k−6 edges of degree 3 and n−5k+5
edges of degree 2. One such k-apex tree G′ is shown in Fig. 3. Therefor for any k-apex
tree G (k ≥ 2)

EM1(G) ≥ (6k − 6)32 + (n− 5k + 5)22 = 4n− 34k − 34

.

4 Conclusion
In this paper we have determined the upper and lower bounds for first Reformulated
Zagreb index of k-apex trees. We also characterized the extremal graphs for these indices.
It would be interesting to derive similar results for second Reformulated Zagreb index
and for other famous indices for example multiplicative Zagreb indices, sum connectivity
index, eccentric connectivity index etc. of k-apex trees.
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