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Abstract
The inverse sum indeg matrix AISI(G) of a graph G is defined so that its (i,j)-entry

is equal to didj

di+dj
for the vertex vivj and 0 otherwise. We discuss some properties of

the spectral radius of AISI . The inverse sum indeg energy EISI(G) of a graph G are
established. Upper and lower bounds of EISI are derived. Finally, we derive a relation
between EISI and some topological indices.
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1 Introduction

In this paper, all graphs are assumed to be finite simple graphs. A graphG = (V,E) is a simple
graph, that is, having no loops, no multiple and directed edges. We denote n to be the order
and m to be the size of the graph G. For a vertex v ∈ V , the open neighborhood of v in a graph
G, denoted N(v), is the set of all vertices that are adjacent to v and the closed neighborhood
of v is N [v] = N(v) ∪ {v}. The degree of a vertex vi in G is di = d(vi) = |N(vi)|. A vertex
of degree one is called pendant vertex. A graph G is said to be k-regular graph if d(v) = k for
every v ∈ V (G). The distance d(u, v) between any two vertices u and v in a graph G is the
length of the shortest path connecting them. A coloring of a graph is an assignment of colors
to its vertices so that no two adjacent vertices have the same color. The chromatic number χ
is defined as the minimum number of colors assigned to the vertices of a graph. All the defini-
tions and terminologies about the graph in this paragraph are available in [11].

The concept energy of a graph was introduced by Gutman [8], in (1978). Let G be a
graph with n vertices and m edges and let A(G) = (aij) be the adjacency matrix of G, where

aij =

 1, if vivj ∈ E,
0, otherwise.

The eigenvalues λ1, λ2, ..., λn of a matrix A(G), assumed in non-increasing order, are the
eigenvalues of the graph G [3]. Let λ1 > λ2 > ... > λt for t ≤ n be the distinct eigenvalues
of G with multiplicities m1, m2, ..., mt, respectively, the maximum absolute value of the
eigenvalues of G is called the spectral radius of the graph G, the multiset of eigenvalues of
A(G) is called the spectrum of G and denoted by

Sp(G) =
λ1 λ2 ... λt
m1 m2 ... mt


As A is real symmetric matrix with zero trace, the eigenvalues of G are real with sum equal
to zero. The energy E(G) of a graph G is defined to be the sum of the absolute values of the
eigenvalues of G [8], i.e.,

E(G) =
n∑
i=1
|λi|.

For more details on the mathematical aspects of the theory of graph energy we refer to [1, 7, 3]
and the references therein.
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The eccentricity extended energy Eeex(G) of a graph G, was defined by Sowaity et al. [20],
to be the energy of the eccentricity extended matrix Aeex(G) of a graph G. They also studied
some bounds of Eeex(G) of a graph G. For details about other energies the authors advice to
see [17, 18, 19, 21].

The inverse sum indeg index ISI(G) of a graph G was defined by K. Pattarbiraman
[15] as the sum of the terms didj

di+dj
, for vivj ∈ E and 0 otherwise, which was selected as

significant predictors of phisicochemical properties of total surface area of octane isomers and
for other external graphs obtained with help of Mathematical Chemistry have a particularly
simple elegant structure [22]. Motivated by this, we introduce the inverse sum indeg matrix
AISI(G) of a graph G and derive the inverse sum indeg energy EISI(G) of G. For details see
[6, 16].
The classical first and second Zagreb indices which were introduced by Gutman and Trinajestic
[10], in 1972 and elaborated in [9]. They are defined as:

M1(G) =
n∑
i=1

d2
i and M2(G) =

∑
vivj∈E(G)

didj.

The general Randić connectivity index is defined as [2, 13]:

Rα = Rα(G) =
∑

vivj∈E
(didj)α

where α is real number.
The harmonic index H(G) of a graph G was introduced by L. Zhong [23], and defined as:

H(G) =
∑

vivj∈E

2
di + dj

.

2 Inverse sum indeg energy of graphs

In this section, we define the inverse sum indeg matrix AISI(G) of a graph G. The inverse sum
indeg energy EISI(G) are established, and we discuss some properties of the spectral radius
of AISI(G). The starting is with the definition of AISI(G) which is explained in the following
definition.

Let G be a graph with n vertices. Then the inverse sum indeg matrix AISI(G) of G, is
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defined as AISI(G) = (sij), where

sij =


didj

di+dj
, if vivj ∈ E,

0, otherwise.

The characteristic polynomial of the inverse sum indeg matrix AISI(G) is defined by

P (G, ζ) = det(ζI − AISI(G)),

where I is the identity matrix of order n. The eigenvalues of the inverse sum indeg matrix
AISI(G) are the roots of the characteristic polynomial.
Since AISI(G) is real symmetric with zero trace, its eigenvalues must be real with sum equal
to zero, i.e., trace(AISI(G)) = 0. We label the eigenvalues ζ1, ζ2, ..., ζn in a non-increasing
manner ζ1 ≥ ζ2 ≥ ... ≥ ζn. The inverse sum indeg energy of a graph G is denoted by EISI(G)
and defined as the summation of the absolute value of the eigenvalues

EISI(G) =
n∑
i=1
|ζi|.

The following example explain the concept.
Let G1 be the graph as in Figure 1.

u
u

u u u
u

1 2

3

4

5

6

Figure 1: G1

Then the inverse sum indeg matrix of G1 is

AISI(G1) =



0 6
5 1 0 0 0

6
5 0 6

5
3
2 0 0

1 6
5 0 0 0 0

0 3
2 0 0 3

4
3
4

0 0 0 3
4 0 0

0 0 0 3
4 0 0


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The characteristic polynomial of AISI(G1) is

P (G1, ζ) = |ζIn − AISI(G1)|

= ζ6 − 7.255ζ4 + 2.88ζ3 + 6.615ζ2 + 3.24ζ.

The inverse sum indeg eigenvalues of G1 are
ζ1 = 2.692, ζ2 = 1.044, ζ3 = 0, ζ4 = −0.521, ζ5 = −1, ζ6 = −2.214.
Therefore the inverse sum indeg energy

EISI(G1) = 7.472.

The folowing results are useful in the subsequent section

Lemma 2.1. [12] Let B = (bij) and H = (hij) be symmetric, non-negative matrices of order
n. If B ≥ H , i.e., bij ≥ hij for all i, j, then ρ1(B) ≥ ρ1(H), where ρ1 is the largest eigenvalue.

Lemma 2.2. [4] Let G be a graph of order n with m edges. Then

λ1 ≥
2m
n

with equality holding if and only if G is regular graph.

Lemma 2.3. [5] If G is a graph with n vertices and chromatic number χ, then

χ ≥ n

n− λ1
.

3 Some results on inverse sum indeg spectral radius

Theorem 3.1. Let G be a r-regular graph. Then

AISI = r

2A.

Proof: Let G be a r-regular graph. Then

sij = didj
di + dj

= r2

2r = 1
2r, for all i, j = 1, 2, ..., n.

Thus, the result follows.
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Theorem 3.2. Let G = Ka,b be a complete bipartite graph. Then

AISI = ab

a+ b
A.

Proof: Let G be a complete bipartite graph. Then for any two adjacent vertices

sij = didj
di + dj

= ab

a+ b
, for all i, j = 1, 2, ..., n.

Thus,

AISI = ab

a+ b
A.

Corollary 3.3. For the regular complete bipartite graph Ka,a

AISI = a

2A.

Theorem 3.4. Let G be a graph with n vertices and m edges. If G has no pendent vertex, then

ζ1(G) ≥ λ1 ≥
2m
n
,

with equality if and only if G is a cycle.

Proof: Let G be a graph of order n and size m. Assume that G has no pendent vertex, then
di ≥ 2 for all i = 1, 2, ... , n. Thus

di + dj ≤ didj ⇔
didj
di + dj

≥ 1.

Hence
AISI(G) ≥ A(G).

Thus, by using Lemma 2.1, the result follows.
To show the equality, let ζ1 = λ1 = 2m

n
. Then, by using Lemma 2.2, we get that G is regular,

which comes from λ1 = 2m
n

.
Let ζ1 = λ1 = 2m

n
, then AISI = A, which holds if and only if di = dj = 2, for all vivj ∈ E.

Hence G is a cycle.
If we assume that G is a cycle, then easily we can get the result.
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Theorem 3.5. Let G be a star or union of stars. Then

ζ1(G) ≤ λ1.

Proof: Let G be a star or union of stars. Then for any two adjacent vertices there is at least
one pendent vertex. Thus, if vivj ∈ E, then di = 1 or dj = 1 for all i = 1, 2, ... , n, which
implies for all vivj ∈ E

didj
di + dj

≤ 1.

Hence, AISI ≤ A, and by using Lemma 2.1, we get

ζ1 ≤ λ1.

4 Bounds for inverse sum indeg energy

In this section, we give some upper and lower bounds for the inverse sum indeg energy
EISI(G) of a graph G.

Theorem 4.1. Let G be a graph of order n and size m. Then

EISI(G) ≤ ∆
2δ
√
nm.

Proof: Let G be a graph with n vertices and m edges. By using Cauchy-Schwartz inequality

EISI ≤

√√√√n n∑
i=1

ζ2
i

=
√√√√n ∑

vivj∈E
( didj
di + dj

)2

≤
√√√√n ∑

vivj∈E

∆2

(2δ)2

= ∆
2δ
√
nm.
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Corollary 4.2. Let G be a r-regular graph. Then

EISI ≤
n

2

√
r

2 .

Theorem 4.3. Let G be a graph of order n ≥ 2 and size m. If G is union of stars, then

EISI ≤
n(χ− 1)

χ
+

√√√√(n− 1)
[
n∆4

4δ2 −
n2(χ− 1)2

χ2

]
,

where χ is the chromatic number of G.

Proof: LetG be a graph of order n ≥ 2 and sizem. IfG union of stars, then by using Theorem
3.5,

ζ1 ≤ λ1. (1)

Now,

EISI =
n∑
i=1
|ζi| = ζ1 +

n∑
i=2
|ζi| (2)

By Cauchy-Schwartz inequality

n∑
i=2

ζi ≤

√√√√(n− 1)
n∑
i=2

ζ2
i . (3)

But,

n∑
i=2

ζ2
i =

n∑
i=1

ζ2
i − ζ2

1 . (4)

Also,

n∑
i=1

ζ2
i = tr(A2

ISI)

=
∑

vivj∈E

(
didj
di + dj

)2

≤ m∆4

4δ2 . (5)
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By Lemma 2.3,

χ ≥ n

n− λ1
⇔ λ1 ≤

n(χ− 1)
χ

. (6)

Thus, from 1, we get

ζ1 ≤
n(χ− 1)

χ
. (7)

Hence, by substituting 5 in 4, 4 in 3 and 3 in 2, we get

EISI ≤ ζ1 +

√√√√(n− 1)
[
n∆4

4δ2 − ζ
2
1

]
. (8)

By substituting 7 in 8, we get the wanted result.

Theorem 4.4. Let G be a nonsingular graph with n vertices and m edges. Then

EISI(G) ≥ ζ1 + n− 1 + ln|det(AISI)| − lnζ1.

Proof: Since G is nonsingular graph, then |ζi| > 0 for all i = 1, 2, ..., n.
If we consider the function f(x) = x−1−ln x. Then easy calculations give f(x) is decreasing
on 0 < x ≤ 1 and is increasing when x > 1. Also we have f(1) = 0, so

f(x) ≥ 0, for x > 0.

Applying f(x) on EISI , we have

EISI(G) =
n∑
i=1
|ζi|

= ζ1 +
n∑
i=2
|ζi|

≥ ζ1 +
n∑
i=2

(1 + ln |ζi|)

= ζ1 + n− 1 +
n∑
i=2

ln |ζi|

= ζ1 + n− 1 + ln|
n∏
i=2

ζi|
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= ζ1 + n− 1 + ln|
∏n
i=1 ζi
ζ1
|

= ζ1 + n− 1 + ln |
n∏
i=1

ζi| − ln ζ1

= ζ1 + n− 1 + ln |det(AISI(G)| − ln ζ1.

5 Relation between EISI and some other topological indices

By using the Gershgorin disc theorem, the following result follows.

Let G be a graph of order n and size m. Then

EISI(G) ≤ ISI(G).

Theorem 5.1. Let G be a graph of order n and size m. Then

EISI(G) ≤ 1
2δM2.

Proof: Let G be a graph of order n and size m. Then from Observation 5,

EISI(G) ≤
∑

vivj∈E

didj
di + dj

≤ 1
2δ

∑
vivj∈E

didj.

Thus,
EISI ≤

1
2δM2.

Theorem 5.2. Let G be a graph of order n and size m. Then

EISI(G) ≤ ∆2

2 H(G).

Proof: Let G be a graph of order n and size m. Then from Observation 5,

EISI(G) ≤
∑

vivj∈E

didj
di + dj

≤ ∆2 ∑
vivj∈E

1
di + dj

.
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Hence,

EISI ≤
∆2

2 H(G).

Theorem 5.3. Let G be a graph of order n and size m. Then

EISI(G) ≥
√

1
2δ2R2(G) + n(n− 1)det(AISI),

where R2(G) is the general product-connectivity index with α = 2.

Proof: Let G be a graph of order n and size m. By using the Arithmetic mean, Geometric
mean inequality,

E2
ISI ≥ 2

∑
vivj∈E

(didj)2

(di + dj)2 + n(n− 1)
n∏
i=1

ζi

≥ 2 1
4δ2

∑
vivj∈E

(didj)2 + n(n− 1)
n∏
i=1

ζi

= 1
2δ2R2(G) + n(n− 1)

n∏
i=1

ζi.

Thus, the result follows.
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