

On Laplacian of Quotient of Randić and Sum-Connectivity Energy of Graphs

C. A. Bhavya

Department of Mathematics
P.E.S. College of Engineering, Mandya-571401, Karnataka, India.
cabhavya212@gmail.com

Puttaswamy

Department of Mathematics
P.E.S. College of Engineering, Mandya-571401, Karnataka, India.
prof.puttaswamy@gmail.com

Abstract

In this paper we define the Laplacian of quotient of Randić and sum-connectivity energy of a graph. Then we compute the Laplacian of quotient of Randić and sum-connectivity energies of complete graph, star graph, complete bipartite graph, the Crown graph, the $(S_m \wedge P_2)$ graph.

Key words: Laplacian of quotient of randić and sum-connectivity energy

2010 Mathematics Subject Classification: 05C50

1 Introduction

In [6] we define quotient of Randić and sum-connectivity energy of a simple graph G as follows. Let a and b be two nonnegative real number with $a \neq 0$. The quotient of Randić and sum-connectivity adjacency matrix of G is the $n \times n$ matrix $A_{qrs} = (a_{ij})$ where

$$a_{ij} = \begin{cases} 0, & \text{if } i = j, \\ \frac{1}{\sqrt{\frac{a(d_i + d_j)}{b(d_i d_j)}}}, & \text{if the vertices } v_i \text{ and } v_j \text{ are adjacent}, \\ 0, & \text{if the vertices } v_i \text{ and } v_j \text{ are not adjacent}. \end{cases}$$

The eigenvalues of the graph G are the eigenvalues of A_{qrs} . Since A_{qrs} is real and symmetric, its eigenvalues are real numbers which are denoted by $\lambda_1, \lambda_2, \lambda_3, ..., \lambda_n$, where $\lambda_1 \geq \lambda_2 \geq$

^{*} Corresponding Author: C.A. Bhavya

Ψ Received on August 11, 2021 / Accepted on December 16, 2021

 $\lambda_3 \geq ... \geq \lambda_n$. Then the Quotient of Randić and sum-connectivity energy of G is defined as

$$E_{qrs}(G) = \sum_{i=1}^{n} |\lambda_i|.$$

In 2004, D. Vukičević and Gutman [5] have defined the Laplacian matrix of the graph G, denoted by $L = (L_{ij})$, as a square matrix of order n whose elements are defined by

$$L_{ij} = \begin{cases} \delta_i, & \text{if } i = j, \\ -1, & \text{if } i \neq j \text{ and the vertices } v_i, v_j \text{ are adjacent,} \\ 0, & \text{if } i \neq j \text{ and the vertices } v_i, v_j \text{ are not adjacent,} \end{cases}$$

where δ_i is the degree of vertex v_i . The eigenvalues $\mu_1, \mu_2, \dots, \mu_n$ of L, where $\mu_1 \geq \mu_2 \geq \dots \geq \mu_n$ are called the Laplacian eigenvalues of G. In 2006, Gutman and B. Zhou [2] have defined the Laplacian energy of LE(G) of G as

$$LE(G) = \sum_{i=1}^{n} \left| \mu_i - \frac{2m}{n} \right|$$

where m is number of edges and n is number of vertices of G.

Motivated by these works, we introduce the Laplacian of Quotient of Randić and sum-connectivity energy of a simple graph G as follows. Let a and b be two nonnegative real number with $a \neq 0$. The Laplacian of quotient of Randić and sum-connectivity adjacency matrix of G is the $n \times n$ matrix $A_{lqrs} = (a_{ij})$ where

$$a_{ij} = \begin{cases} \delta_i, & \text{if } i = j, \\ \frac{1}{\sqrt{\frac{a(d_i + d_j)}{b(d_i d_j)}}}, & \text{if the vertices } v_i \text{ and } v_j \text{ are adjacent.} \\ 0, & \text{if the vertices } v_i \text{ and } v_j \text{ are not adjacent.} \end{cases}$$

where δ_i is the degree of vertex v_i . Where $\mu_1 \geq \mu_2 \geq \cdots \geq \mu_n$ are called the eigenvalues of A_{lqrs} . Then Laplacian of Quotient of Randić and sum-connectivity energy of G is

$$E_{lqrs}(G) = \sum_{i=1}^{n} \left| \mu_i - \frac{2m}{n} \right|$$

where m is number of edges and n is number of vertices of G.

2 Laplacian of Quotient of Randić and sum-connectivity energies of some families of graphs

We begin with some basic definitions and notations.

Definition 2.1. [3] A graph G is said to be complete if every pair of its distinct vertices are adjacent. A complete graph on n vertices is denoted by K_n .

Definition 2.2. [1] The Crown graph S_n^0 for an integer $n \geq 3$ is the graph with vertex set $\{u_1, u_2, \ldots, u_n, v_1, v_2, \ldots, v_n\}$ and edge set $\{u_i v_j; 1 \leq i, j \leq n, i \neq j\}$. S_n^0 is therefore equivalent to the complete bipartite graph $K_{n,n}$ from which the edges of perfect matching have been removed.

Definition 2.3. [3] A bigraph or bipartite graph G is a graph whose vertex set V(G) can be partitioned into two subsets V_1 and V_2 such that every line of G joins V_1 with V_2 . (V_1, V_2) is a bipartition of G. If G contains every line joining V_1 and V_2 , then G is a complete bigraph. If V_1 and V_2 have M and M points, we write $G = K_{m,n}$. A star is a complete bigraph $K_{1,n}$.

Definition 2.4. [4] The conjunction $(S_m \wedge P_2)$ of $S_m = \overline{K}_m + K_1$ and P_2 is the graph having the vertex set $V(S_m) \times V(P_2)$ and edge set $\{(v_i, v_j)(v_k, v_l) | v_i v_k \in E(S_m) \text{ and } v_j v_l \in E(P_2) \text{ and } 1 \leq i, k \leq m+1, 1 \leq j, l \leq 2\}.$

Now we compute Laplacian of Quotient of Randić and sum-connectivity energies of complete graph, star graph, complete bipartite graph, the Crown graph, the $(S_m \wedge P_2)$ graph.

Theorem 2.5. Let a and b be as defined above. Then the Laplacian of Quotient of Randić and sum-connectivity energy of the complete bipartite graph $K_{n,n}$ is $2\sqrt{\frac{b(n^2)^2}{a(n+n)}}$.

Proof: Let the vertex set of the complete bipartite graph be $V(K_{n,n}) = \{u_1, u_2, \dots, u_n, v_1, v_2, \dots, v_n\}$. Then the Laplacian of Quotient of Randić and sum-connectivity matrix of complete bipartite graph is given by

$$A_{lqrs} = \begin{pmatrix} n & \cdots & 0 & \sqrt{\frac{b(n^2)}{a(n+n)}} & \cdots & \sqrt{\frac{b(n^2)}{a(n+n)}} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & n & \sqrt{\frac{b(n^2)}{a(n+n)}} & \cdots & \sqrt{\frac{b(n^2)}{a(n+n)}} \\ \sqrt{\frac{b(n^2)}{a(n+n)}} & \cdots & \sqrt{\frac{b(n^2)}{a(n+n)}} & n & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ \sqrt{\frac{b(n^2)}{a(n+n)}} & \cdots & \sqrt{\frac{b(n^2)}{a(n+n)}} & \cdots & n \end{pmatrix}.$$

Its characteristic polynomial is

$$|\lambda I - A_{lqrs}| = \begin{vmatrix} (\lambda - n)I_n & -\sqrt{\frac{b(n^2)}{a(n+n)}}J^T \\ -\sqrt{\frac{b(n^2)}{a(n+n)}}J & (\lambda - n)I_n \end{vmatrix}$$

where J is an $n \times n$ matrix with all the entries are equal to 1. Hence the characteristic equation is given by

$$\begin{vmatrix} \Lambda I_n & -\sqrt{\frac{b(n^2)}{a(n+n)}} J^T \\ -\sqrt{\frac{b(n^2)}{a(n+n)}} J & (\Lambda - n)I_n \end{vmatrix} = 0$$

where $\Lambda = \lambda - n$ and which can be written as

$$|\Lambda I_n| \left| \Lambda I_n - \left(-\sqrt{\frac{b(n^2)}{a(n+n)}} J \right) \frac{I_n}{\Lambda} \left(-\sqrt{\frac{b(n^2)}{a(n+n)}} J^T \right) \right| = 0.$$

On simplification, we obtain

$$\frac{\Lambda^{n-n}}{(\frac{(a(n+n)}{b(n^2)})^n} \left| \frac{a(n+n)}{b(n^2)} \Lambda^2 I_n - J J^T \right| = 0$$

which can be written as

$$\frac{\Lambda^{n-n}}{\left(\frac{a(n+n)}{b(n^2)}\right)^n} P_{JJ^T}\left(\frac{a(n+n)}{b(n^2)}\right)\Lambda^2) = 0$$

where $P_{JJ^T}(\lambda)$ is the characteristic polynomial of the matrix ${}_nJ_n$. Thus, we have

$$\frac{\Lambda^{n-n}}{(\frac{a(n+n)}{bn^2})^n}((\frac{a(n+n)}{b(n^2)})\Lambda^2 - n^2)(\frac{a(n+n)}{b(n^2)}\Lambda^2)^{n-1} = 0$$

which is same as

$$\Lambda^{n+n-2}(\Lambda^2 - \frac{b(n^2)^2}{a(n+n)}) = 0.$$

Therefore, the spectrum of $K_{n,n}$ is given by

$$Spec(K_{n,n}) = \begin{pmatrix} n & n + \sqrt{\frac{b(n^2)^2}{a(n+n)}} & n - \sqrt{\frac{b(n^2)^2}{a(n+n)}} \\ n + n - 2 & 1 & 1 \end{pmatrix}.$$

Hence the Laplacian of Quotient of Randić and sum-connectivity energy of the complete bi-

partite graph is

$$E_{lqrs}(K_{n,n}) = \sum_{i=1}^{n} \left| \mu_i - \frac{2m}{n} \right|$$

$$E_{lqrs}(K_{n,n}) = 2\sqrt{\frac{b(n^2)^2}{a(n+n)}}$$
 as desired.

Theorem 2.6. Let a and b be as defined above. Then the Laplacian of quotient of Randić and sum-connectivity energy of the S_n is

$$E_{lqrs}(S_n) = \frac{(n-2)^2}{n} + \left| \frac{n^2 - 2(n-1)}{n} + \sqrt{\frac{n^3a - 4(n-1)(an - b(n-1))}{2na}} \right| + \left| \frac{n^2 - 2(n-1)}{n} - \sqrt{\frac{n^3a - 4(n-1)(an - b(n-1))}{2na}} \right|.$$

Proof: Let the vertex set of star graph be given by $V(S_n) = \{v_1, v_2, \dots, v_n\}$. Then the Laplacian of quotient of Randić and sum-connectivity matrix of the star graph S_n is given by

$$A_{lqrs} = \begin{pmatrix} n-1 & \sqrt{\frac{b(n-1)}{an}} & \sqrt{\frac{b(n-1)}{an}} & \cdots & \sqrt{\frac{b(n-1)}{an}} & \sqrt{\frac{b(n-1)}{an}} \\ \sqrt{\frac{b(n-1)}{an}} & 1 & 0 & \cdots & 0 & 0 \\ \sqrt{\frac{b(n-1)}{an}} & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \sqrt{\frac{b(n-1)}{an}} & 0 & 0 & \cdots & 1 & 0 \\ \sqrt{\frac{b(n-1)}{an}} & 0 & 0 & \cdots & 0 & 1 \end{pmatrix}.$$

Hence the characteristic polynomial is given by

$$|\lambda I - A_{lqrs}| = \begin{vmatrix} \lambda - (n-1) & -\sqrt{\frac{b(n-1)}{an}} & -\sqrt{\frac{b(n-1)}{an}} & \cdots & -\sqrt{\frac{b(n-1)}{an}} \\ -\sqrt{\frac{b(n-1)}{an}} & \lambda - 1 & 0 & \cdots & 0 \\ -\sqrt{\frac{b(n-1)}{an}} & 0 & \lambda - 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -\sqrt{\frac{b(n-1)}{an}} & 0 & 0 & \cdots & \lambda - 1 \end{vmatrix}$$

$$= \left(\sqrt{\frac{b(n-1)}{an}}\right)^n \begin{vmatrix} \gamma & -1 & -1 & \cdots & -1 & -1 \\ -1 & \mu & 0 & \cdots & 0 & 0 \\ -1 & 0 & \mu & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ -1 & 0 & 0 & \cdots & \mu & 0 \\ -1 & 0 & 0 & \cdots & 0 & \mu \end{vmatrix},$$

where
$$\mu = (\lambda - 1)\sqrt{\frac{an}{b(n-1)}}$$
 and $\gamma = (\lambda - (n-1))\sqrt{\frac{an}{b(n-1)}}$. Then $|\lambda I - A_{lqrs}| = \phi_n(\mu) \left(\sqrt{\frac{b(n-1)}{a(n)}}\right)^n$ where $\phi_n(\mu) = \begin{vmatrix} \gamma & -1 & -1 & \cdots & -1 & -1 \\ -1 & \mu & 0 & \cdots & 0 & 0 \\ -1 & 0 & \mu & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ -1 & 0 & 0 & \cdots & \mu & 0 \\ -1 & 0 & 0 & \cdots & 0 & \mu \end{vmatrix}$

Using the properties of the determinants, we obtain after some simplifications

$$\phi_n(\mu) = (\mu \phi_{n-1}(\mu) - \mu^{n-2})$$

Iterating this, we obtain

$$\phi_n(\mu) = \mu^{n-2}(\mu\gamma - (n-1))$$

Therefore

$$|\lambda I - A_{lqrs}| = \left(\sqrt{\frac{b(n-1)}{an}}\right)^n \left[\left((\frac{an}{b(n-1)})(\lambda - 1)(\lambda - (n-1)) - (n-1) \right) ((\lambda - 1)\sqrt{\frac{b(n-1)}{an}})^{n-2} \right].$$

Thus the characteristic equation is given by

$$(\lambda - 1)^{n-2} \left((\lambda - 1)(\lambda - (n-1)) - \frac{b(n-1)^2}{an} \right) = 0$$

Hence

$$Spec(S_n) = \begin{pmatrix} 1 & n + \sqrt{\frac{n^3 a - 4(n-1)(an - b(n-1))}{2na}} & n - \sqrt{\frac{n^3 a - 4(n-1)(an - b(n-1))}{2na}} \\ n - 2 & 1 & 1 \end{pmatrix}$$

Hence the Laplacian of quotient of Randić and sum-connectivity energy of S_n is

$$E_{lqrs}(S_n) = \frac{(n-2)^2}{n} + \left| \frac{n^2 - 2(n-1)}{n} + \sqrt{\frac{n^3a - 4(n-1)(an - b(n-1)}{2na}} \right| + \left| \frac{n^2 - 2(n-1)}{n} - \sqrt{\frac{n^3a - 4(n-1)(an - b(n-1))}{2na}} \right|.$$

Theorem 2.7. Let a and b be as defined above. Then the Laplacian of quotient of Randić and sum-connectivity energy of K_n is $2(n-1)\sqrt{\frac{(n-1)b}{a^2}}$.

Proof: Let the vertex set of Complete graph be given by $V(K_n) = \{v_1, v_2, \dots, v_n\}$. Then the Laplacian of quotient of Randić and sum-connectivity energy of matrix of the complete graph

 K_n is given by

$$A_{lqrs} = \begin{pmatrix} n-1 & \sqrt{\frac{(n-1)^2b}{a2(n-1)}} & \cdots & \sqrt{\frac{(n-1)^2b}{a2(n-1)}} \\ \sqrt{\frac{(n-1)^2b}{a2(n-1)}} & n-1 & \cdots & \sqrt{\frac{(n-1)^2b}{a2(n-1)}} \\ \vdots & \vdots & \ddots & \vdots \\ \sqrt{\frac{(n-1)^2b}{a2(n-1)}} & \sqrt{\frac{(n-1)^2b}{a2(n-1)}} & \cdots & n-1 \end{pmatrix}$$

Hence the characteristic polynomial is given by

$$|\lambda I - A_{lqrs}| = \begin{vmatrix} \lambda - (n-1) & -\sqrt{\frac{(n-1)^2 b}{a2(n-1)}} & \cdots & -\sqrt{\frac{(n-1)^2 b}{a2(n-1)}} \\ -\sqrt{\frac{(n-1)^2 b}{a2(n-1)}} & \lambda - (n-1) & \cdots & -\sqrt{\frac{(n-1)^2 b}{a2(n-1)}} \\ \vdots & \vdots & \ddots & \vdots \\ -\sqrt{\frac{(n-1)^2 b}{a2(n-1)}} & -\sqrt{\frac{(n-1)^2 b}{a2(n-1)}} & \cdots & \lambda - (n-1) \end{vmatrix}$$

$$= \left(\sqrt{\frac{(n-1)^2 b}{a2(n-1)}}\right)^n \begin{vmatrix} \mu & -1 & -1 & \cdots & -1 & -1 \\ -1 & \mu & -1 & \cdots & -1 & -1 \\ -1 & -1 & \mu & \cdots & -1 & -1 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ -1 & -1 & -1 & \cdots & \mu & -1 \\ -1 & -1 & -1 & \cdots & -1 & \mu \end{vmatrix}$$

where
$$\mu = (\lambda - (n-1))\sqrt{\frac{a2(n-1)}{(n-1)^2b}}$$
. Then $|\lambda I - A_{lqrs}| = \phi_n(\mu) \left(\sqrt{\frac{(n-1)^2b}{a2(n-1)}}\right)^n$, where $\phi_n(\mu) = \begin{vmatrix} \mu & -1 & -1 & \cdots & -1 & -1 \\ -1 & \mu & -1 & \cdots & -1 & -1 \\ -1 & -1 & \mu & \cdots & -1 & -1 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ -1 & -1 & -1 & \cdots & \mu & -1 \\ -1 & -1 & -1 & \cdots & -1 & -1 \\ -1 & \mu & -1 & \cdots & -1 & -1 \\ -1 & \mu & -1 & \cdots & -1 & -1 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ -1 & -1 & -1 & \cdots & \mu & -1 \\ 0 & 0 & 0 & \cdots & -1 - \mu & \mu + 1 \end{vmatrix}$

$$= \begin{vmatrix} \mu & -1 & -1 & \cdots & -1 & -1 \\ -1 & \mu & -1 & \cdots & -1 & -1 \\ -1 & -1 & \mu & \cdots & -1 & -1 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ -1 & -1 & -1 & \cdots & \mu & -1 \\ 0 & 0 & 0 & \cdots & -1 - \mu & \mu + 1 \end{vmatrix}$$

$$= (\mu + 1) \begin{vmatrix} \mu & -1 & -1 & \cdots & -1 & -1 \\ -1 & \mu & -1 & \cdots & -1 & -1 \\ -1 & -1 & \mu & \cdots & -1 & -1 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ -1 & -1 & -1 & \cdots & \mu & -1 \\ -1 & -1 & -1 & \cdots & -1 & -1 \end{vmatrix} + (\mu + 1) \begin{vmatrix} \mu & -1 & -1 & \cdots & -1 & -1 \\ -1 & \mu & -1 & \cdots & -1 & -1 \\ -1 & -1 & \cdots & -1 & -1 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ -1 & -1 & -1 & \cdots & \mu & -1 \\ -1 & -1 & -1 & \cdots & \mu & -1 \\ -1 & -1 & -1 & \cdots & -1 & \mu \end{vmatrix}$$

$$\phi_n(\mu) = -(\mu + 1)^{n-1} + (\mu + 1) \left[(\mu + 1)^{n-2} (\mu - (n-2)) \right]$$

$$= -(\mu + 1)^{n-1} + (\mu + 1)^{n-1} (\mu - (n-2)).$$

Iterating this, we obtain

$$\phi_n(\mu) = \mu^{n-2}(\mu^2 - (n-1)),$$

Thus the characteristic equation is given by

$$\left(\sqrt{\frac{(n-1)^2b}{a^2(n-1)}}\right)^n(\mu+1)^{n-1}(\mu-(n-1))=0.$$

Hence the Laplacian of Quotient of Randić and sum-connectivity energy of K_n is

$$E_{lqrs}(K_n) = \sum_{i=1}^{n} \left| \mu_i - \frac{2m}{n} \right|$$

$$E_{lqrs}(K_n) = 2(n-1)\sqrt{\frac{(n-1)b}{a^2}}.$$

Theorem 2.8. Let the vertex set $V(S_n^0)$ of the crown graph be given by

$$V(S_n^0) = \{u_1, u_2, \dots, u_n, v_1, v_2, \dots, v_n\}.$$

Then the Laplacian of quotient of Randić and sum-connectivity energy of the crown graph is $4(n-1)\sqrt{\frac{(n-1)b}{a^2}}$.

Proof: The Laplacian of quotient of Randić and sum-connectivity energy matrix of crown

graph is given by

Its characteristic polynomial is

$$|\lambda I - A_{lqrs}| = \begin{vmatrix} (\lambda - (n-1))I_n & -\sqrt{\frac{b((n-1)^2)}{a(2(n-1))}}K^T \\ \sqrt{\frac{b((n-1)^2)}{a(2(n-1))}}K & (\lambda - (n-1)I_n \end{vmatrix}$$

where K is an $n \times n$ matrix. Hence the characteristic equation is given by

$$\begin{vmatrix} \Lambda I_n & -\sqrt{\frac{b((n-1)^2)}{a(2(n-1))}} K^T \\ \sqrt{\frac{b((n-1)^2)}{a(2(n-1))}} K & \Lambda I_n. \end{vmatrix} = 0.$$

Where $\Lambda = (\lambda - (n-1)$, this is same as

$$|\Lambda I_n| \left| \Lambda I_n - \left(-\sqrt{\frac{b((n-1)^2)}{a(2(n-1))}} K \right) \frac{I_n}{\Lambda} \left(-\sqrt{\frac{b((n-1)^2)}{a(2(n-1))}} K^T \right) \right| = 0$$

which can be written as

$$\left(\frac{b((n-1)^2)}{a(2(n-1))}\right)^n P_{KK^T}\left(\left(\frac{a(2(n-1))}{b((n-1)^2)}\right)\Lambda^2\right) = 0$$

where $P_{KK^T(\Lambda)}$ is the characteristic polynomial of the matrix KK^T . Thus we have

$$\left(\frac{b((n-1)^2)}{a(2(n-1))}\right)^n \left[\frac{a(2(n-1))}{b((n-1)^2)}\right] \Lambda^2 - (n-1)^2 \left[\frac{a(2(n-1))}{b((n-1)^2)}\right] \Lambda^2 - 1\right]^{n-1} = 0$$

which is same as

$$\left(\Lambda^2 - \frac{b(n-1)^3}{2a}\right) \left(\Lambda^2 - \frac{b(n-1)}{a^2}\right)^{n-1} = 0.$$

Therefore

$$Spec\left(S_{n}^{0}\right) = \left(\begin{array}{ccc} \sqrt{\frac{b(n-1)^{3}}{2a}} + (n-1) & -\sqrt{\frac{b(n-1)^{3}}{2a}} + (n-1) & \sqrt{\frac{b(n-1)}{2a}} + (n-1) & -\sqrt{\frac{b(n-1)}{2a}} + (n-1) \\ 1 & 1 & n-1 & n-1 \end{array}\right).$$

Hence the Laplacian of quotient of Randić and sum-connectivity energy of crown graph is $E_{lqrs}(S_n^0)=4(n-1)\sqrt{\frac{(n-1)b}{a2}}$ as desired.

Theorem 2.9. Let a and b be as defined above. Then the Laplacian of Quotient of Randić and sum-connectivity energy of $(S_m \wedge P_2)$ is

$$\frac{(2n-4)(2-n)}{n} + 2 \left| \frac{n^2 - 2(n-1)}{n} + \sqrt{\frac{n^3a - 4(n-1)(an-b(n-1))}{2na}} \right| + 2 \left| \frac{n^2 - 2(n-1)}{n} - \sqrt{\frac{n^3a - 4(n-1)(an-b(n-1))}{2na}} \right| + 2 \left| \frac{n^2 - 2(n-1)}{n} - \sqrt{\frac{n^3a - 4(n-1)(an-b(n-1))}{2na}} \right| + 2 \left| \frac{n^2 - 2(n-1)}{n} - \sqrt{\frac{n^3a - 4(n-1)(an-b(n-1))}{2na}} \right| + 2 \left| \frac{n^2 - 2(n-1)}{n} - \sqrt{\frac{n^3a - 4(n-1)(an-b(n-1))}{2na}} \right| + 2 \left| \frac{n^2 - 2(n-1)}{n} - \sqrt{\frac{n^3a - 4(n-1)(an-b(n-1))}{2na}} \right| + 2 \left| \frac{n^2 - 2(n-1)}{n} - \sqrt{\frac{n^3a - 4(n-1)(an-b(n-1))}{2na}} \right| + 2 \left| \frac{n^2 - 2(n-1)}{n} - \sqrt{\frac{n^3a - 4(n-1)(an-b(n-1))}{2na}} \right| + 2 \left| \frac{n^2 - 2(n-1)}{n} - \sqrt{\frac{n^3a - 4(n-1)(an-b(n-1))}{2na}} \right| + 2 \left| \frac{n^2 - 2(n-1)}{n} - \sqrt{\frac{n^3a - 4(n-1)(an-b(n-1))}{2na}} \right| + 2 \left| \frac{n^2 - 2(n-1)}{n} - \sqrt{\frac{n^3a - 4(n-1)(an-b(n-1))}{2na}} \right| + 2 \left| \frac{n^2 - 2(n-1)}{n} - \sqrt{\frac{n^3a - 4(n-1)(an-b(n-1))}{2na}} \right| + 2 \left| \frac{n^2 - 2(n-1)}{n} - \sqrt{\frac{n^3a - 4(n-1)(an-b(n-1))}{2na}} \right| + 2 \left| \frac{n^2 - 2(n-1)}{n} - \sqrt{\frac{n^3a - 4(n-1)(an-b(n-1))}{2na}} \right| + 2 \left| \frac{n^2 - 2(n-1)}{n} - \sqrt{\frac{n^3a - 4(n-1)(an-b(n-1))}{2na}} \right| + 2 \left| \frac{n^2 - 2(n-1)}{n} - \sqrt{\frac{n^3a - 4(n-1)(an-b(n-1))}{2na}} \right| + 2 \left| \frac{n^2 - 2(n-1)}{n} - \sqrt{\frac{n^3a - 4(n-1)(an-b(n-1))}{2na}} \right| + 2 \left| \frac{n^2 - 2(n-1)}{n} - \sqrt{\frac{n^3a - 4(n-1)(an-b(n-1))}{2na}} \right| + 2 \left| \frac{n^2 - 2(n-1)}{n} - \sqrt{\frac{n^3a - 4(n-1)(an-b(n-1))}{2na}} \right| + 2 \left| \frac{n^2 - 2(n-1)}{n} - \sqrt{\frac{n^3a - 4(n-1)(an-b(n-1))}{2na}} \right| + 2 \left| \frac{n^2 - 2(n-1)}{n} - \sqrt{\frac{n^3a - 4(n-1)(an-b(n-1))}{2na}} \right| + 2 \left| \frac{n^2 - 2(n-1)}{n} - \sqrt{\frac{n^3a - 4(n-1)(an-b(n-1))}{2na}} \right| + 2 \left| \frac{n^2 - 2(n-1)}{n} - \sqrt{\frac{n^3a - 4(n-1)(an-b(n-1))}{2na}} \right| + 2 \left| \frac{n^2 - 2(n-1)}{n} - \sqrt{\frac{n^2a - 4(n-1)(an-b(n-1))}{2na}} \right| + 2 \left| \frac{n^2 - 2(n-1)}{n} - \sqrt{\frac{n^2a - 4(n-1)(an-b(n-1))}{2na}} \right| + 2 \left| \frac{n^2 - 2(n-1)}{n} - \sqrt{\frac{n^2a - 4(n-1)(an-b(n-1))}{2na}} \right| + 2 \left| \frac{n^2 - 2(n-1)}{n} - \sqrt{\frac{n^2a - 4(n-1)(an-b(n-1))}{2na}} \right| + 2 \left| \frac{n^2 - 2(n-1)}{n} - \sqrt{\frac{n^2a - 4(n-1)(an-b(n-1))}{2na}} \right| + 2 \left| \frac{n^2 - 2(n-1)}{n} - \sqrt{\frac{n^2a - 4(n-1)(an-b(n-1))}{2na}} \right| + 2 \left| \frac{n^2 - 2(n-1)}{n} - \frac{n^2a - 4(n-1)(an-b(n-1))}{2na}} \right| + 2 \left| \frac{n^2 - 2(n$$

Proof: Let the vertex set of $(S_m \wedge P_2)$ graph be given by $V(S_m \wedge P_2) = \{v_1, v_2, \dots, v_{2m+2}\}$. Then the Laplacian of Quotient of Randić and sum-connectivity matrix of $(S_m \wedge P_2)$ graph is given by

$$A_{lqrs} = \begin{pmatrix} n-1 & 0 & \cdots & 0 & 0 & \sqrt{\frac{b(n-1)}{an}} & \cdots & \sqrt{\frac{b(n-1)}{an}} \\ 0 & 1 & \cdots & 0 & \sqrt{\frac{b(n-1)}{an}} & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 & \sqrt{\frac{b(n-1)}{an}} & 0 & \cdots & 0 \\ 0 & \sqrt{\frac{b(n-1)}{an}} & \cdots & \sqrt{\frac{b(n-1)}{an}} & n-1 & 0 & \cdots & 0 \\ \sqrt{\frac{b(n-1)}{an}} & 0 & \cdots & 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ \sqrt{\frac{b(n-1)}{an}} & 0 & \cdots & 0 & 0 & 1 & \cdots & 1 \end{pmatrix}_{2n \times 2n}$$

where m+1=n. Its characteristic polynomial is given by

$$|\lambda I - A_{lqrs}| \ = \ \begin{vmatrix} \lambda - (n-1) & 0 & \cdots & 0 & 0 & -\sqrt{\frac{b(n-1)}{an}} & -\sqrt{\frac{b(n-1)}{an}} & \cdots & -\sqrt{\frac{b(n-1)}{an}} \\ 0 & \lambda - 1 & \cdots & 0 & -\sqrt{\frac{b(n-1)}{an}} & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda - 1 & -\sqrt{\frac{b(n-1)}{an}} & 0 & \cdots & 0 \\ 0 & -\sqrt{\frac{b(n-1)}{an}} & \cdots & -\sqrt{\frac{b(n-1)}{an}} & \lambda - (n-1) & 0 & \cdots & 0 \\ -\sqrt{\frac{b(n-1)}{an}} & 0 & \cdots & 0 & 0 & \lambda - 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \vdots \\ -\sqrt{\frac{b(n-1)}{an}} & 0 & \cdots & 0 & 0 & 0 & \cdots & \lambda - 1 \\ \end{vmatrix}_{2n \times 2n}$$

Hence the characteristic equation is given by

$$\left(\sqrt{\frac{b(n-1)}{an}}\right)^{2n} \begin{vmatrix} \gamma & 0 & \cdots & 0 & 0 & -1 & \cdots & -1 \\ 0 & \Lambda & \cdots & 0 & -1 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \Lambda & -1 & 0 & \cdots & 0 \\ 0 & -1 & \cdots & -1 & \gamma & 0 & \cdots & 0 \\ -1 & 0 & \cdots & 0 & 0 & \Lambda & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ -1 & 0 & \cdots & 0 & 0 & 0 & \cdots & \Lambda \end{vmatrix}_{2n \times 2n} = 0$$

$$where \Lambda = \sqrt{\frac{na}{(n-1)b}}(\lambda - 1)and\gamma = \sqrt{\frac{na}{(n-1)b}}(\lambda - (n-1)).$$

Let

$$\phi_{2n}(\Lambda) = \begin{vmatrix} \gamma & 0 & 0 & \cdots & 0 & 0 & -1 & -1 & \cdots & -1 \\ 0 & \Lambda & 0 & \cdots & 0 & -1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & \Lambda & \cdots & 0 & -1 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \Lambda & -1 & 0 & 0 & \cdots & 0 \\ 0 & -1 & -1 & \cdots & -1 & \gamma & 0 & 0 & \cdots & 0 \\ -1 & 0 & 0 & \cdots & 0 & 0 & \Lambda & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ -1 & 0 & 0 & \cdots & 0 & 0 & -1 & -1 & \cdots & -1 \\ 0 & \Lambda & 0 & \cdots & 0 & -1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & \Lambda & \cdots & 0 & -1 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \Lambda & -1 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ -1 & 0 & 0 & \cdots & 0 & 0 & \Lambda & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ -1 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & \cdots & \Lambda & |_{(2n-1)\times(2n-1)}$$

$$+ (-1)^{2n+2} \begin{vmatrix} 0 & 0 & 0 & \cdots & 0 & 0 & -1 & \cdots & -1 & -1 \\ \Lambda & 0 & 0 & \cdots & 0 & -1 & 0 & \cdots & 0 & 0 \\ 0 & \Lambda & 0 & \cdots & 0 & -1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \Lambda & -1 & 0 & \cdots & 0 & 0 \\ -1 & -1 & -1 & \cdots & -1 & \gamma & 0 & \cdots & 0 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 0 & \Lambda & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & \Lambda & 0 \end{vmatrix}_{(2n-1)\times(2n-1)}$$

Let

Let
$$\Psi_{2n-1}(\Lambda) = (-1)^{2n+2} \begin{vmatrix} 0 & 0 & 0 & \cdots & 0 & 0 & -1 & \cdots & -1 & -1 \\ \Lambda & 0 & 0 & \cdots & 0 & -1 & 0 & \cdots & 0 & 0 \\ 0 & \Lambda & 0 & \cdots & 0 & -1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \Lambda & -1 & 0 & \cdots & 0 & 0 \\ -1 & -1 & -1 & \cdots & -1 & \gamma & 0 & \cdots & 0 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 0 & \Lambda & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & \Lambda & 0 \end{vmatrix}_{(2n-1)\times(2n-1)}$$

Using the properties of the determinants, we obtain, after some simplifications

$$\Psi_{2n-1}(\Lambda) = -\Lambda^{n-2}\Theta_n(\Lambda)$$

where
$$\Theta_n(\Lambda) = \begin{vmatrix} \Lambda & 0 & 0 & \cdots & -1 \\ 0 & \Lambda & 0 & \cdots & -1 \\ 0 & 0 & \Lambda & \cdots & -1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -1 & -1 & -1 & \cdots & \gamma \end{vmatrix}_{n \times n}$$

Then

$$\phi_{2n}(\Lambda) = -\Lambda^{n-2}\Theta_n(\Lambda) + \Lambda\phi_{2n-1}(\Lambda).$$

Now, proceeding as above, we obtain

$$\begin{split} \phi_{2n-1}(\Lambda) &= (-1)^{(2n-1)+2} \Psi_{2n-2}(\Lambda) + (-1)^{(2n-1)+(2n-1)} \Lambda \phi_{2n-2}(\Lambda) \\ &= -\Lambda^{n-3} \Theta_n(\Lambda) + \Lambda \phi_{2n-2}(\Lambda). \end{split}$$

Proceeding like this, we obtain at the $(n-1)^{th}$ step

$$\phi_{2n}(\Lambda) = -(n-1)\Lambda^{n-2}\Theta_n(\Lambda) + \Lambda^{(n-1)}\xi_{n+1}(\Lambda)$$
 where $\xi_{n+1}(\Lambda) = \begin{vmatrix} \gamma & 0 & 0 & \cdots & 0 \\ 0 & \Lambda & 0 & \cdots & -1 \\ 0 & 0 & \Lambda & \cdots & -1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & -1 & -1 & \cdots & \Lambda \end{vmatrix}_{(n+1)\times(n+1)}$
$$\phi_{2n}(\Lambda) = -(n-1)\Lambda^{n-2}\Theta_n(\Lambda) + \Lambda^{n-1}\gamma\Theta_n(\Lambda)$$

$$= -(n-1)\Lambda^{n-2}\Theta_n(\Lambda) + \Lambda^{n-1}\gamma\Theta_n(\Lambda)$$

$$= (\Lambda^{n-1}\gamma - (n-1)\Lambda^{n-2})\Theta_n(\Lambda).$$

Using the properties of the determinants, we obtain

$$\Theta_n(\Lambda) = \Lambda^{n-1}\gamma - (n-1)\Lambda^{n-2}$$

Therefore

$$\phi_{2n}(\Lambda) = (\Lambda^{n-1}\gamma - (n-1)\Lambda^{n-2})^2$$

Hence characteristic equation becomes

$$\left(\sqrt{\frac{b(n-1)}{an}}\right)^{2n}\phi_{2n}(\Lambda) = 0$$

which is same as

$$\left(\sqrt{\frac{b(n-1)}{an}}\right)^{2n} (\Lambda^{n-1}\gamma - (n-1)\Lambda^{n-2})^2 = 0$$

This reduces to

$$\lambda^{2n-4}((\frac{na}{b(n-1)}(\lambda-1)(\lambda-(n-1))-(n-1))^2=0.$$

Therefore

$$Spec((S_m \land P_2)) = \begin{pmatrix} 1 & n + \sqrt{\frac{n^3 a - 4(n-1)(an - b(n-1))}{2na}} & n - \sqrt{\frac{n^3 a - 4(n-1)(an - b(n-1))}{2na}} \\ 2n - 4 & 2 & 2 \end{pmatrix}$$

Hence the Laplacian of Quotient of Randić and sum-connectivity energy of $(S_m \wedge P_2)$ graph is

$$E_{lqrs}((S_m \wedge P_2)) = \sum_{i=1}^n \left| \mu_i - \frac{2m}{n} \right|$$

$$E_{lqrs}((S_m \wedge P_2)) = \frac{(2n-4)(2-n)}{n} + 2 \left| \frac{n^2 - 2(n-1)}{n} + \sqrt{\frac{n^3a - 4(n-1)(an - b(n-1))}{2na}} \right| + 2 \left| \frac{n^2 - 2(n-1)}{n} - \sqrt{\frac{n^3a - 4(n-1)(an - b(n-1))}{2na}} \right| + 2 \left| \frac{n^2 - 2(n-1)}{n} - \sqrt{\frac{n^3a - 4(n-1)(an - b(n-1))}{2na}} \right| + 2 \left| \frac{n^2 - 2(n-1)}{n} - \sqrt{\frac{n^3a - 4(n-1)(an - b(n-1))}{2na}} \right| + 2 \left| \frac{n^2 - 2(n-1)}{n} - \sqrt{\frac{n^3a - 4(n-1)(an - b(n-1))}{2na}} \right| + 2 \left| \frac{n^2 - 2(n-1)}{n} - \sqrt{\frac{n^3a - 4(n-1)(an - b(n-1))}{2na}} \right| + 2 \left| \frac{n^2 - 2(n-1)}{n} - \sqrt{\frac{n^3a - 4(n-1)(an - b(n-1))}{2na}} \right| + 2 \left| \frac{n^2 - 2(n-1)}{n} - \sqrt{\frac{n^3a - 4(n-1)(an - b(n-1))}{2na}} \right| + 2 \left| \frac{n^2 - 2(n-1)}{n} - \sqrt{\frac{n^3a - 4(n-1)(an - b(n-1))}{2na}} \right| + 2 \left| \frac{n^2 - 2(n-1)}{n} - \sqrt{\frac{n^3a - 4(n-1)(an - b(n-1))}{2na}} \right| + 2 \left| \frac{n^2 - 2(n-1)}{n} - \sqrt{\frac{n^3a - 4(n-1)(an - b(n-1))}{2na}} \right| + 2 \left| \frac{n^2 - 2(n-1)}{n} - \sqrt{\frac{n^3a - 4(n-1)(an - b(n-1))}{2na}} \right| + 2 \left| \frac{n^2 - 2(n-1)}{n} - \sqrt{\frac{n^3a - 4(n-1)(an - b(n-1))}{2na}} \right| + 2 \left| \frac{n^2 - 2(n-1)}{n} - \sqrt{\frac{n^3a - 4(n-1)(an - b(n-1))}{2na}} \right| + 2 \left| \frac{n^2 - 2(n-1)}{n} - \sqrt{\frac{n^3a - 4(n-1)(an - b(n-1))}{2na}} \right| + 2 \left| \frac{n^2 - 2(n-1)}{n} - \sqrt{\frac{n^3a - 4(n-1)(an - b(n-1))}{2na}} \right| + 2 \left| \frac{n^2 - 2(n-1)}{n} - \sqrt{\frac{n^3a - 4(n-1)(an - b(n-1))}{2na}} \right| + 2 \left| \frac{n^2 - 2(n-1)}{n} - \sqrt{\frac{n^3a - 4(n-1)(an - b(n-1))}{2na}} \right| + 2 \left| \frac{n^2 - 2(n-1)}{n} - \sqrt{\frac{n^3a - 4(n-1)(an - b(n-1))}{2na}} \right| + 2 \left| \frac{n^2 - 2(n-1)}{n} - \sqrt{\frac{n^3a - 4(n-1)(an - b(n-1))}{2na}} \right| + 2 \left| \frac{n^2 - 2(n-1)}{n} - \sqrt{\frac{n^3a - 4(n-1)(an - b(n-1))}{2na}} \right| + 2 \left| \frac{n^2 - 2(n-1)}{n} - \sqrt{\frac{n^3a - 4(n-1)(an - b(n-1))}{2na}} \right| + 2 \left| \frac{n^3a - 4(n-1)(an - b(n-1))}{2na} - \frac{n^3a - 4(n-1)(an - b(n-1))}{2na} \right| + 2 \left| \frac{n^3a - 4(n-1)(an - b(n-1))}{2na} - \frac{n^3a - 4(n-1)(an - b(n-$$

References

- [1] C. Adiga, Abdelmejid Bayad, Ivan Gutman and Shrikanth Avant Srinivas, The minimum covering energy of a graphs, Kragujevac j. Sci., 34 (2012), 39-56.
- [2] I. Gutman and B. Zhou, Laplacian energy of a graph, Linear Algebra and its application, 414 (2006), 29-37.
- [3] F. Harary, Graph Theory, 10^{th} Reprint, Narosa Publishing House, New Delhi, 2001.
- [4] Ş. M. A. Soeud and Huda Jaber, Some Families of Strongly*-graphs (Manuscript).
- [5] D. Vukičević and I. Gutman, Laplacian Matrix and Distance in trees, Kragujevac J. Maths., 26 (2004), 19-24.
- [6] C. Bhavya and Puttaswamy, On quotient of Randić and sum-connectivity energies of some graphs (Communicated).

Ī