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Abstract

The topological indices are useful tools to the theoretical chemists that are
provided by graph theory. They correlate certain physicochemical properties such
as boiling point, strain energy, stability, etc. of chemical compounds. In this paper,
we consider new graph invariants, based on the eccentricities of all the neighbors
of a vertex in a graph, and so-called the neighborhood eccentricities indices. The
neighborhood eccentricities indices of some chemical graph is calculated.
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1 Introduction
Throughout this paper, we consider the connected, undirected simple graph. The basic
definitions and concepts used in this study are adopted from [1, 9].

Given a graph G = (V (G), E(G)), the cardinality |V (G)| = n of the vertex set V (G)
is the order of G. The neighborhood of a vertex v ∈ V (G) is defined as the set N(v)
consisting of all vertices u which are adjacent with v.The degree of a vertex v in a graph G

denoted by deg(v) is the number of its neighbors, that is, deg(v) = |N(v)|. The distance
d(u, v) between any two vertices u and v of G is the length of the shortest path (number
of edges) joining them. The eccentricity of a vertex v, denoted e(v), in a graph G, is the
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distance between v and a vertex farthest from v, that is, e(v) = max{d(v, u) : u ∈ V (G)}.

The topological indices are the useful tools to the theoretical chemists that are pro-
vided by graph theory. A topological index is a real number related to a graph. These are
graph invariants. In mathematical chemistry, these are known as molecular descriptors.
Topological indices are the mathematical measures which correlate to the structures of
any simple finite graphs. It does not depend on the labeling or the pictorial representa-
tion of a graph. The vertices and edges of molecular graphs correspond to the atoms of
the compounds and chemical bonds, respectively. Topological indices play a vital role in
mathematical chemistry specially, in chemical documentation, isomer discrimination and
correlate certain physicochemical properties such as boiling point, strain energy and sta-
bility etc. of chemical compounds. It studies Quantitative structure activity (QSAR) and
structure property (QSPR) relationships that are used to predict the biological activities
and properties of the chemical compounds.

The oldest molecular index is the one put forward in 1947 by Wiener [16], and defined
as the sum of distance between all pairs of vertices of a graph G, that is

W =
∑
i<j

d(vi, vj).

The first and second Zagreb indices have been introduced by Gutman and Trinajesti
[8], and are defined as:

M1(G) =
∑

u∈V (G)
deg(u)2

M2(G) =
∑

uv∈E(G)
deg(u)deg(v).

In an analogy with the first and the second Zagreb indices, M. Ghorbani et al. and D.
Vukicevic et al. define the first E1, and the second E2, Zagreb eccentricity indices by
[4, 15]

E1(G) =
∑

v∈V (G)
e(v)2

E2(G) =
∑

uv∈E(G)
e(u)e(v).

The total eccentricity of the graph G [2, 14], denoted by ξ(G), is defined as the sum of
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eccentricities of all vertices of graph G, that is

ξ(G) =
∑

v∈V (G)
e(v).

Sharma, Goswami and Madan [13] introduced the eccentric connectivity index and
which they defined as

ξc(G) =
∑

v∈V (G)
deg(v)e(v).

For further study and literature related to the eccentric topological indices, see references
[6, 10, 12, 17].
In [5], Graovac et al. defined the fifth M -Zagreb indices as

M1G5(G) =
∑

uv∈E(G)
(S(u) + S(v))

M2G5(G) =
∑

uv∈E(G)
S(u)S(v).

Where S(v) =
∑

u∈N(v)
deg(u).

A new version of Zagreb index called fifth M3-Zagreb index is defined by Kulli in [11],

M3G5(G) =
∑

uv∈E(G)
|S(u) − S(v)|.

In literature, mathematical chemists used combinations of vertex degree, edge degree,
vertex eccentricity, open neighbourhood degree sum, etc., to define several topological
indices and to study their applications in chemistry. Recently, S. Ediz [3], in 2017,
introduced S-indices of connected graphs, throughout of them the first S-index of G

defined as;
S1(G) =

∑
v∈V (G)

s(v)2,

where s(v) = |Mv − Sv|, Sv =
∑

u∈N(v)
deg(u) and Mv =

∏
u∈N(v)

deg(u).

In this paper, motivated by the S-indices of graphs, we investigate the effect of the
eccentricities of the neighbours vertices along with the vertex itself, we proceed to intro-
duce new version of topological indices of a connected graph G based on the eccentricities
sum and the eccentricities product of the open neighbourhood of a vertex in a graph, and
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so-called them the first, second and third neighborhood eccentricities indices (in short
Ne-indices) of a graph G and denoted them by N1

e (G), N2
e (G) and N3

e (G), respectively.
The exact formulas of N1

e (G) for some chemical graphs is computed.

2 Ne-degrees and Ne-indices of a graph

For a vertex v ∈ V (G), the open neighborhood of v in G, denoted N(v), is the set of all
vertices that are adjacent to v. For a vertex v, Tv =

∑
u∈N(v)

e(u), and Wv =
∏

u∈N(v)
e(u).

The Ne-degree of a vertex v of a connected graph G defined as

dne(v) = |Wv − Tv|.

Lemma 2.1. For a nontrivial connected graph G and a vertex v ∈ V (G),

1. If deg(v) = 1, then dne(v) = 0.

2. If deg(v) = 2, then dne(v) = 0, if and only if e(u) = 2, for every u ∈ N(v).

Definition 2.2. The first, second and third neighborhood eccentricities indices of a graph
G are defined as

N1
e (G) =

∑
v∈V (G)

dne(v).

N2
e (G) =

∑
uv∈E(G)

dne(u)dne(v).

N3
e (G) =

∑
uv∈E(G)

dne(u) + dne(v).

3 N 1
e -indix of cycloalkenes

We denote a cycloalkene having n carbon atoms and 2n−2 hydrogen atoms by C2n−2
n . The

molecular graphs of them are obtained by attaching 2n−2 pendant vertices corresponding
to hydrogen atoms to vertices of a cycle corresponding to carbon atoms as shown in Figure
1.
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Figure 1: A cycloalkene and its graph model

Theorem 3.1. For n ≥ 3, the first T index of a cycloalkene molecular graph is given by

N1
e (C2n−2

n ) =


n5

16 + 5n4

8 + 2n3 − n2

2 − 8n, if n is even ;

n5

16 + 7n4

8 + 2n3 − 5n2

2 − 57n
8 + 21

8 , if n is odd.

Proof: The cycloalkene molecular graph C2n−2
n has 3n−2 vertices including two vertices

(namely, C1 and C2) of degree three, n − 2 vertices C3, C4, ..., Cn of degree four and cor-
respond to the carbon atoms of cycloalkenes and the remaining 2n − 2 vertices (namely,
H ′s) are end vertices with and they correspond to hydrogen atoms of cycloalkenes. Thus
we have the following cases:

Case 1: If n is even, then e(Ci) = n
2 + 1, for 1 ≤ i ≤ n and e(H) = n

2 + 2.
Since, deg(H) = 1. Then by Lemma 2.1, dne(H) = |WH − TH | = 0, for every H ∈
V (C2n−2

n ).
The vertices C1 and C2 of carbon atoms has 3 neighborhood vertices, that two vertices
of carbon atoms and one vertex of hydrogen, so for i = 1, 2

TC1 = TC2 = n

2 + 1 + n

2 + 1 + n

2 + 2

= 3n

2 + 4,

WC1 = WC2 = (n

2 + 1)(n

2 + 1)(n

2 + 2)

= n3

8 + n2 + 5n

2 + 2.
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Hence,

dne(C1) = dne(C2) = |WC1 − TC1|

= |n
3

8 + n2 + 5n

2 + 2 − 3n

2 − 4|

= n3

8 + n2 + n − 2. (1)

Since every vertex Ci, for 3 ≤ i ≤ n of carbon atoms has four neighbors, that two vertices
of carbon atoms and two vertices of hydrogen, so for 3 ≤ i ≤ n,

TCi
= n

2 + 1 + n

2 + 1 + n

2 + 2 + n

2 + 2

= 2n + 6,

WCi
= (n

2 + 1)(n

2 + 1)(n

2 + 2)(n

2 + 2)

= n4

16 + n2 + 3n3

4 + 13n2

4 + 6n + 4.

Then,

dne(Ci) = |WCi
− TCi

|

= n4

16 + n2 + 3n3

4 + 13n2

4 + 4n − 2. (2)

By collecting dne(H) and dne(Ci), for 1 ≤ i ≤ n, from Equations 1 and 2, we get the
following result

N1
e (C2n−2

n ) =
∑

v∈V (C2n−2
n )

dne(v)

=
2n−2∑
i=1

dne(Hi) +
n∑

i=1
dne(Ci)

= (2n − 2)dne(H) + 2dne(C1) +
n∑

i=3
dne(Ci)

= 0 + 2(n3

8 + n2 + n − 2) + (n − 2)(n4

16 + n2 + 3n3

4 + 13n2

4 + 4n − 2)

= n3

4 + 2n2 + 2n − 4 + n5

16 + 5n4

8 + 7n3

4 − 5n2

2 − 10n + 4.

= n5

16 + 5n4

8 + 2n3 − n2

2 − 8n.
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Case 2: If n is odd, then for 1 ≤ i ≤ n, e(Ci) = n−1
2 + 1 and e(H) = n−1

2 + 2.
By Lemma 2.1, dne(H) = 0 for all hydrogen atoms. Since, the vertices C1 and C2 of
carbon atoms has 3 neighborhood vertices, that two vertices of carbon atoms and one
vertex of hydrogen . Hence, for i = 1, 2

TC1 = TC2 = n − 1
2 + 2 + n − 1

2 + 1 + n − 1
2 + 1

= 3(n − 1)
2 + 4,

WC1 = WC2 = (n − 1
2 + 2)(n − 1

2 + 1)(n − 1
2 + 1)

= n3 + 5n2 + 7n + 3
8 .

and

dne(C1) = dne(C2) = |WC1 − TC2|

= |n
3 + 5n2 + 7n + 3

8 − (3(n − 1)
2 + 4)|

= n3 + 5n2 − 5n − 17
8 . (3)

Since every vertex Ci, 3 ≤ i ≤ n of carbon atoms has 4 neighborhood vertices, that
two vertices of carbon atoms and two vertices of hydrogen, so

TCi
= n − 1

2 + 1 + n − 1
2 + 1 + n − 1

2 + 2 + n − 1
2 + 2

= 2n + 4,

WCi
= (n − 1

2 + 1)(n − 1
2 + 1)(n − 1

2 + 2)(n − 1
2 + 2)

= n4

16 + n3

2 + 11n2

8 + 3n

2 + 9
16 .

Then,

dne(Ci) = |WCi
− TCi

|

= |n
4

16 + n3

2 + 11n2

8 + 3n

2 + 9
16 − 2n − 4|

= n4

16 + n3

2 + 11n2

8 − n

2 − 55
16 . (4)
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By collecting dne(H) and dne(Ci), for i = 1, 2, ..., n, from Equations (3) and (4), we get
the following result

N1
e (C2n−2

n ) =
∑

v∈V (C2n−2
n )

dne(v)

=
2n−2∑
i=1

dne(Hi) +
n∑

i=1
dne(Ci)

= (2n − 2)dne(H) + 2dne(C1) +
n∑

i=3
dne(Ci)

= 0 + 2(n3 + 5n2 − 5n − 17
8 ) + (n − 2)(n4

16 + n3

2 + 11n2

8 − n

2 − 55
16)

= n3 + 5n2 − 5n − 17
4 + n5

16 + 7n4

8 + 7n3

4 − 15n2

4 − 47
8 n + 55

8 .

= n5

16 + 7n4

8 + 7n3

4 − 15n2

4 − 47
8 n + 55

8

= n5

16 + 7n4

8 + 2n3 − 5n2

2 − 57n

8 + 21
8 .

4 N 1
e -index of Alkanes

In this section, we construct the general formulas for the N1
e -index of a chemical trees

which represent of an alkane compound. Alkanes are hydrocarbons with only single
bonds between the atoms, and it has a general formula PnH2n+2, where n is number of
carbon atoms.

u uu u u
uuuuu

uuuu
uvH H

HHHHH

H H H H

C1 C2 C3 C4 Cn

Figure 2: Clsses of alkanes CnH2n+2

v
H
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Theorem 4.1. For n ≥ 7, the first N1
e index of alkanes graph CnH2n+2 is given by

N1
e (CnH2n+2) =


31n5

80 + 15n4

8 + n3

48 + 13n2

4 − n
30 + 14, if n is even;

31n5

80 + 45n4

16 + 79n3

12 + 69n2

8 − 72n
15 + 81

16 , if n is odd.

Proof: The alkene molecular graph CnH2n+2, n ≥ 7, has 3n + 2 vertices including n

vertices C1, C2, ..., Cn of degree four and correspond to the carbon atoms of alkenes and
the remaining 2n + 2 vertices (namely, H’s) are end vertices with degree one and they
correspond to hydrogen atoms of alkenes. Since, the eccentricity vertex set of alkenes is
a symmetric around the center vertex set and e(vi) = e(vn+1−i), for every i = 1, 2, ..., n

and every vi ∈ V (CnH2n+2).
Since, for every H ∈ V (CnH2n+2), deg(H) = 1. Then by Lemma 2.1,

dne(H) = |WH − TH | = 0.

Thus we have the following two cases:

Case 1: n is even, It is clear that, the center set of CnH2n+ is {Cn
2
, Cn

2 +1} and hence
every Ci, i = 1, 2, ..., n

2 − 1 has three neighbors with e = n + 2 − i and one neighbor with
eccentricity e = n − i, whereas Cn

2
has three neighbors with e = .n

2 + 2 and one with
e = n

2 + 1. Thus

TCi
= TCn+1−i

= 3(n + 2 − i) + (n − i) = 4(n − i) + 6.

WCi
= WCn+1−i

= (n + 2 − i)3(n − i) = (n − i)4 + 6(n − i)3 + 12(n − i)2 + 8(n − i).

Hence,

dne(Ci) = dne(Cn+1−i) = |WCi
− TCi

| = (n − i)4 + 6(n − i)3 + 12(n − i)2 + 4(n − i) − 6.

For the central vertex, we get

TC n
2

= TC n
2 +1 = 3(n

2 + 2) + (n

2 + 1) = 2n + 7

WC n
2

= WC n
2 +1 = (n

2 + 2)3(n

2 + 1) = 1
16(n4 + 14n3 + 72n2 + 160n + 128)

and hence, dne(Cn
2
) = dne(Cn

2 +1) = 1
16(n4 + 14n3 + 72n2 + 128n + 16).
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Therefore,

N1
e (CnH2n+2) = 2

[
dne(Cn

2
) +

n
2 −1∑
i=1

dne(Ci)
]

= 1
8(n4 + 14n3 + 72n2 + 128n + 16)

+ 2
n
2 −1∑
i=1

[
(n − i)4 + 6(n − i)3 + 12(n − i)2 + 4(n − i) − 6

]

= 1
8(n4 + 14n3 + 72n2 + 128n + 16) + 2

n
2 −1∑
i=1

(n4 + 6n3 + 12n2 + 4n − 6)

− 2(4n3 + 18n2 + 24n − 12)
n
2 −1∑
i=1

i + 2(6n2 + 18n + 12)
n
2 −1∑
i=1

i2

− 2(4n + 6)
n
2 −1∑
i=1

i3 + 2
n
2 −1∑
i=1

i4.

By take the values of the summations and simple computing, we get

N1
e (CnH2n+2) = 1

8(n4 + 14n3 + 72n2 + 128n + 16) + 2(n

2 − 1)(n4 + 6n3 + 12n2 + 4n − 6)

− (4n3 + 18n2 + 24n − 12)(n2 − 2n

4 ) + (6n2 + 18n + 12)(n3 − 3n2 + 2n

12 )

− (4n + 6)(n4 − 4n3 + 4n2

32 ) + 3n5 − 15n4 + 20n3 − 8n

240

= 31n5

80 + 15n4

8 + n3

48 + 13n2

4 − n

30 + 14.

Case 2: n is odd, the center set of CnH2n+ is {Cn+1
2

} and hence every Ci, i = 1, 2, ..., n−1
2

has three neighbors with e = n + 2 − i and one neighbor with eccentricity e = n − i,
whereas Cn+1

2
has four neighbors with e = .n+3

2 . Thus, for 1 ≤ i ≤ n−1
2 ,

TCi
= TCn+1−i

= 3(n + 2 − i) + (n − i) = 4(n − i) + 6.

WCi
= WCn+1−i

= (n + 2 − i)3(n − i) = (n − i)4 + 6(n − i)3 + 12(n − i)2 + 8(n − i).

Hence,

dne(Ci) = dne(Cn+1−i) = |WCi
− TCi

| = (n − i)4 + 6(n − i)3 + 12(n − i)2 + 4(n − i) − 6.
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For the central vertex, we get
TC n+1

2
= 2n + 6

WC n+1
2

= (n + 3
2 )4

and hence, dne(Cn+1
2

) = 1
16(n4 + 12n3 + 54n2 + 76n − 15).

Therefore,

N1
e (CnH2n+2) = dne(Cn+1

2
) + 2

n−1
2∑

i=1
dne(Ci)

= 1
16(n4 + 12n3 + 54n2 + 76n − 15)

+ 2
n+1

2∑
i=1

(
(n − i)4 + 6(n − i)3 + 12(n − i)2 + 4(n − i) − 6

)

= 1
16(n4 + 12n3 + 54n2 + 76n − 15) + 2

n−1
2∑

i=1
(n4 + 6n3 + 12n2 + 4n − 6)

− 2(4n3 + 18n2 + 24n − 12)
n−1

2∑
i=1

i + 2(6n2 + 18n + 12)
n−1

2∑
i=1

i2

− 2(4n + 6)
n−1

2∑
i=1

i3 + 2
n−1

2∑
i=1

i4

N1
e (CnH2n+2) = 1

16(n4 + 12n3 + 54n2 + 76n − 15) + (n − 1)(n4 + 6n3 + 12n2 + 4n − 6)

− (4n3 + 18n2 + 24n + 4)(n(n − 2)
4 ) + (6n2 + 18n + 12)(n3 − 3n2 + 2n

12 )

− (4n + 6)(n4 − 4n3 + 4n2

32 ) + (3n5 − 15n4 + 20n3 − 8n

240 )

= 31n5

80 + 45n4

16 + 79n3

12 + 69n2

8 − 72n

15 + 81
16 .

5 N 1
e index of CRr

n

In this section, we construct general formula for N1
e -index of the chemical graph cy-

cloalkyls that is constructed by attaching an alkyl Rr instead of each hydrogen atoms in
the cycloalkenes.
We denote the group of alkyls by Rr, r ∈ Z+. For example R1, R2, R3, ... denote methyl,
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ethyl, propyl,..., respectively, as shown in Figure 3.
When we put an alkyl instead of each hydrogen atom in the cycloalkene, we get a cy-
cloalkyls and denoted by CRr

n as shown in Figure 4.
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Figure 3: The first few alkyls
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Figure 4: Molecular structure of CRr
n

Theorem 5.1. For positive integers n ≥ 3 and r ≥ 1, the frist N1
e -index farmula of the

cycloalkyls graph is given by

N1
e (CRr

n ) = [(n − 2) + 2r(n − 1)]
(

⌊n

2 ⌋ + r
)4

+ [(6n − 10) + 4r(n − 1)(r + 4)]
(

⌊n

2 ⌋ + r
)3
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+ [(13n − 18) + 8r(n − 1)(r2 + 6r + 8)]
(

⌊n

2 ⌋ + r
)2

+ [(n − 12) + 2r(n − 1)(r3 + 8r2 + 2r + 19)]
(

⌊n

2 ⌋ + r
)

− [2n + r(n − 1)(6r4 + 60r3 + 220r2 + 285r + 299
15 )].

Where ⌊n
2 ⌋ =

{
n
2 , if n even;
n−1

2 , if n odd. .

Proof: For positive integers n ≥ 3 and r ≥ 1, the vertex set of the cycloalkyls molecular
graph CRr

n can be divided into three kinds of vertices. Kind 1, the vertices on the cycle,
denoted by {Ci : 1 ≤ i ≤ n}, correspond to the carbon atoms of cycloalkenes, tow of them
(namely, C1 and C2) of degree three and n−2 vertices C3, C4, ..., Cn of degree four. Kind 2,
the vertices on the path, denoted by {C

(ik)
j : 1 ≤ j ≤ r, 1 ≤ i ≤ n and k = 1, 2}, corre-

spond to the carbon atoms of alkenes, branches, all of them with degree four. Kind 3, the
remaining vertices (namely, H ′s) are end vertices with degree one and they correspond to
hydrogen atoms of cycloalkyls. By easy chick, for any n ≥ 3, we get e(Ci) = ⌊n

2 ⌋ + r + 1,
e(C(ik)

j ) = ⌊n
2 ⌋ + r + j + 1 and e(H(j)) = e(C(ik)

j ) + 1, for 1 ≤ i ≤ n, 1 ≤ j ≤ r and
k = 1, 2. Hence, for every H ∈ V (CRr

n ), correspond to hydrogen atoms, deg(H) = 1.
Then by Lemma 2.1, dne(H) = |WH − TH | = 0.
In the next, we put X = ⌊n

2 ⌋ + r, to easy compute.
The vertices C1 and C2 of carbon atoms on cycle has three neighborhood vertices, that
two vertices of carbon atoms and one vertex of alkyl, so for i = 1, 2

TC1 = TC2 = 2(X + 1) + (X + 2) = 3X + 4,

WC1 = WC2 = (X + 1)2(X + 2) = X3 + 4X2 + 5X + 2

thus, dne(C1) = dne(C2) = |WC1 − TC1 | = X3 + 4X2 + 2X − 2. (1)

For 3 ≤ i ≤ n

TCi
= 2(X + 1) + 2(X + 2) = 4X + 6,

WC1 = WC2 = (X + 1)2(X + 2)2 = X4 + 6X3 + 13X2 + 12X + 4,

thus, dne(Ci) = |WCi
− TCi

| = X4 + 6X3 + 13X2 + 8X − 2. (2)
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For 1 ≤ j ≤ r, 1 ≤ i ≤ n and k = 1, 2,

T
C

(ik)
j

= 3(X + j + 2) + (X + j) = 4X + 4j + 2,

W
C

(ik)
j

= (X + j + 2)3(X + j) = [X3 + 3X2(j + 2) + 3X(j + 2)2 + (j + 2)3][X + j]

= (X4 + 6X3 + 12X2 + 8X) + (4X3 + 18X2 + 24X + 8)j

+ (6X2 + 18X + 12)j2 + (4X + 6)j3 + j4,

Hence,

dne(C(ik)
j ) = |W

C
(ik)
j

− T
C

(ik)
j

|

= (X4 + 6X3 + 12X2 + 4X − 6) + (4X3 + 18X2 + 24X + 4)j

+ (6X2 + 18X + 12)j2 + (4X + 6)j3 + j4. (3)

Therefore, from (1), (2) and (3), we get

N1
e (CRr

n ) = 2dne(C1) +
n∑
i=

dne(Ci) + (2n − 2)
r∑

j=1
dne(C(ik)

j )

= 2(X3 + 4x2 + 2X − 2) + (n − 2)(X4 + 6X3 + 13x2 + 8X − 2)

+ (2n − 2)
r∑

j=1

[
(X4 + 6X3 + 12X2 + 4X − 6) + (4X3 + 18X2 + 24X + 4)j

+ (6X2 + 18X + 12)j2 + (4X + 6)j3 + j4
]

N1
e (CRr

n ) = [(n − 2)X4 + (6n − 10)X3 + (13n − 18)X2 + (n − 12)X − 2n]

+ (2n − 2)
[
r(X4 + 6X3 + 12X2 + 4X − 6) + (4X3 + 18X2 + 24X + 4)

r∑
j=1

j
]

+ (2n − 2)
[
(6X2 + 18X + 12)

r∑
j=1

j2 + (4X + 6)
r∑

j=1
j3 +

r∑
j=1

j4
]

= [(n − 2 + 2r(n − 1))X4 + (6n − 10 + 12r(n − 1))X3 + (13n − 18 + 24r(n − 1))X2

+ (n − 12 + 8r(n − 1))X − 2n − 12(n − 1)]

+ (2n − 2)
[
(4X3 + 18X2 + 24X + 4)(r(r + 1)

2 ) + (6X2 + 18X + 12)(r(r + 1)(2r + 1)
6 )

]
+ (2n − 2)

[
(4X + 6)(r2(r + 1)2

4 ) + (r(r + 1)(2r + 1)(3r2 + 3r − 1)
30 )

]
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= [(n − 2) + 2r(n − 1)]X4 + [(6n − 10) + 4r(n − 1)(r + 4)]X3

+ [(13n − 18) + 8r(n − 1)(r2 + 6r + 8)]X2 + [(n − 12)

+ 2r(n − 1)(r3 + 8r2 + 2r + 19)]X

− [2n + r(n − 1)(6r4 + 60r3 + 220r2 + 285r + 299
15 )].

6 Conclusion
In this paper, we studied the effect of the eccentricities of the neighbours vertices along
with the vertex itself. The neighborhood eccentricity degree of a vertex v in a graph
G is defined and denoted by dne(v). Furthermore, we introduced three new versions of
the topological indices of a connected graphs based on the eccentricities sum and the
eccentricities product of the open neighbourhood of a every vertex in a graph G, and
are called the first, second and third neighborhood eccentricities indices and denoted by
N1

e (G), N2
e (G) and N3

e (G), respectively. The exact formulas of N1
e (G) for some chemical

graphs is computed.
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