
International Journal of Applied Graph Theory
Vol. 5, No. 2 (2021), 01 - 16. ISSN(Online) : 2456− 7884

On the Downhill Domination Polynomial of Graphs
Anwar Saleh

Department of Mathematics, Faculty of Science
University of Jeddah, Jeddah, Saudi Arabia.

Math.msfs@gmail.com
Bashair Al-Ahmadi

Department of Mathematics, Faculty of Science
University of Jeddah, Jeddah, Saudi Arabia.

BALAHMADI0023.stu@uj.edu.sa
Wafa Al-Shammakh

Department of Mathematics, Faculty of Science
University of Jeddah, Jeddah, Saudi Arabia.

Math.msfs@gmail.com

Abstract

Graph polynomials have been developed for calculate the structural information of
networks using combinatorial graph parameters and to characterize the graphs. Many
problems in graph theory and discrete mathematics can be treated and solved in a rather
efficient manner by making use of polynomials. In this research work, we introduce and
study a new graph polynomial called downhill domination polynomial of a graph along
with this new polynomial, we define the downhill domination roots of a graph. The down-
hill domination polynomial with its roots of some standard families of graphs and few
graphs of cycle related graphs such as complete graph, tadpole graph, lollipop graph, gear
graph and barbell graph are obtained. Downhill domination polynomials for book graph
and stacked book graph are established. Finally, we get general result for determine the
downhill domination polynomial of any graph of n vertices with γdn(G) = 1 and has r
minimum downhill dominating sets, also for a graph of n vertices with unique minimum
downhill dominating set with size s along with these general results, graphical representa-
tion are presented to show the behavior and positions of the downhill domination roots.
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1 Introduction

In this paper, we concerned only about connected simple graphs G = (V,E) which are finite,
undirected with no loops and multiple edges. The degree of a vertex v in a graph is the number
of edges incident with it, denoted by deg(v). A u − v path P in a graph G is a sequence of
vertices in G, starting with u and ending at v, such that consecutive vertices in P are adjacent,
and no vertex is repeated. We say that a path π = v1, v2, ...vk+1 is a downhill path if for every
i, 1 ≤ i ≤ k, deg(vi) ≥ deg(vi+1) [4].
The following notations and different types of graphs well known in the literature [3] and [5].
A complete multipartite graph is a multipartite graph such that any two vertices that are not
in the same part have an edge connecting them. We will denote a complete multipartite graph
with k parts by Kn1,n2,...,nk

where ni is the number of vertices in the ith part of the graph. A
Double star is the graph obtained fromK2 by joining s pendent edges to one end and r pendent
edges to the other end of K2. A wheel Wn+1, n > 3 is the join of Cn and K1. A helm graph,
denoted by Hn, is a graph obtained from Wn+1 by attaching an end edge to each rim vertex of
Wn+1, where the vertices corresponding to Cn are known as rim vertices. The gear graph is a
wheel graph with a vertex added between each pair adjacent graph vertices of the outer cycle.
The gear graphGn has 2n+1 vertices and 3n edges. The sierpinski sieve graph Sn is the graph
obtained from the connectivity of the sierpinski sieve. The graph has 3(3n−1+1)

2 vertices and
3n edges. The tadpole graph Tr,s is obtained by joining a cycle Cr and a path Ps by a bridge,
where r > 3 and s > 1. The lollipop graph Lr,s is obtained by joining a complete graph Kr

and a path Ps by a bridge, where r > 3 and s > 1. The n-barbell graph Bn is obtained by
connecting two copies of a complete graph Kn by a bridge. The Cartesian product G of two
graphs G1 and G2, denoted G1�G2, has vertex set V (G) = V (G1)�V (G2), and two distinct
vertices (a, b) and (c, d) of G1�G2 are adjacent if either a = c and bd ∈ E(G2), or b = d and
ac ∈ (G1).

A set S ⊆ V of vertices in a graph G = (V,E) is a dominating set if every vertex v ∈ V is
an element of S or adjacent to an element of S. A downhill dominating set, abbreviated DDS,
is a set S ⊆ V having the property that every vertex v ∈ V lies on a downhill path originating
from some vertex in S. The downhill domination number γdn(G) equals the minimum cardi-
nality of a DDS of G [4].

Graph polynomials have been developed for measuring structural information of networks
using combinatorial graph invariants and for characterizing graphs. Various problems in graph



On the Downhill Domination Polynomial of Graphs 3

theory and discrete mathematics can be treated and solved in a rather efficient manner by mak-
ing use of polynomials.
Various graph polynomials have been proven useful in discrete mathematics, engineering, in-
formation sciences, mathematical chemistry, and related disciplines. Numerous graph poly-
nomials were introduced in the literature, several of them also turned out to be applicable in
mathematical chemistry. One of the interested graph polynomials is the domination polyno-
mial of graphs [1].

The downhill domination concept and the huge application of graph polynomial motivated
us to introduce a new graph polynomial called downhill domination polynomial of graph.
In this research work, we introduce new graph polynomial called downhill domination poly-
nomial and along with this polynomial, we define the downhill domination roots of a graph
exact values and expressions for the standard families of graphs, and some graph operations
are obtained.

2 Downhill Domination Polynomial

In this section, we define the downhill domination polynomial of graph and obtain this poly-
nomial along with its roots for some families of standard graphs.

Definition 2.1. For any graph G of n vertices, the downhill domination polynomial of G is
define by DW (G, x) = ∑n

i=γdn(G) dw(G, i)xi, where dw(G, i) is the number of downhill dom-
inating sets of size i in G. The set of roots of DW (G, x) is called downhill domination roots
of graph G and denoted by Zdw(G).

Observation 2.2. Let G be a connected regular graph of n vertices. Then, DW (G, x) =
(1 + x)n − 1.

Corollary 2.3.

i. Let G be any cycle graph Cn, where n ≥ 3. Then, DW (G, x) = (1 + x)n − 1.

ii. Let G be any complete graph Kn. Then, DW (G, x) = (1 + x)n − 1.

Observation 2.4. Let G ∼= Pn be a path of order n, where n > 4. Then, DW (G, x) =
(1 + x)2((1 + x)n−2 − 1).
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Proposition 2.5. Let G ∼= Kr,s be a complete bipartite of r+ s vertices, where s, r ≥ 2. Then,

DW (G, x) =

(1 + x)s+r − 1 if r = s;
xr(1 + x)s if r < s.

Proof: Let G ∼= Kr,s be a complete bipartite of r + s vertices, where s, r ≥ 2. We have two
cases:
Case 1. If s = r, then G is connected regular graph. Hence, DW (G, x) = (1 + x)r+s − 1.
Case 2. If r < s, then γdn(G) = r. In this case there is only one minimum downhill dominating
set of size r. Then, for i = r + 1 there are

(
s
1

)
downhill dominating sets of size r + 1.

Also, for i = r + 2, there are
(
s
2

)
downhill dominating sets of size r + 2. This means, for

i = r + 1, r + 2, ..., r + s, there are
(
s
i−r

)
downhill dominating sets of size i. Thus, we have

DW (G, x) =
(
s

0

)
xr +

(
s

1

)
xr+1 + ...+

(
s

s

)
xr+s

= xr
[(
s

0

)
x0 +

(
s

1

)
x+ ...+

(
s

s

)
xs
]

= xr(1 + x)s.

Theorem 2.6. Let G ∼= Kn1,n2,...,nk
be complete multipartite graph of n vertices, where n =∑k

i=1 ni. Then,

DW (G, x) =


(1 + x)n − 1 if n1 = n2 = ... = nk;
xn1(1 + x)n−n1 if n1 < n2 < ... < nk;
(1 + x)n−d((1 + x)d − 1) if n1 = n2 = ... = ni < ... < nk ,where d = ∑i

j=1 nj.

Proof: Let G ∼= Kn1,n2,...,nk
be complete multipartite graph of n vertices, where n = ∑k

i=1 ni.
We have three cases:
Case 1. n1 = n2 = ... = nk, then the graphG is connected regular graph. Hence,DW (G, x) =
(1 + x)n − 1.
Case 2. n1 < n2 < ... < nk. In this case there is only one minimum downhill dominating sets
of size n1. This means, dw(G, n1) = 1. Then, for i = n1 + 1, n1 + 2, ..., n, there are

(
n−n1
i−nn1

)
downhill dominating sets of size i. Thus, we get

DW (G, x) =
(
n− n1

0

)
xn1 +

(
n− n1

1

)
xn1+1 + ...+

(
n− n1

n− n1

)
xn
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= xn1

[(
n− n1

0

)
x0 +

(
n− n1

1

)
x+ ...+

(
n− n1

n− n1

)
xn−n1

]
= xn1(1 + x)n−n1 .

Case 3. n1 = n2 = ... = ni < ... < nk and d = ∑i
j=1 nj . In this case, there are d minimum

downhill dominating sets of size one. Then, we have

dw(G, 1) =
(
n

1

)
−
(
n− d

1

)
= d.

For i = 2, 3, ..., n − d. Every downhill dominating set of size i must be contains at least one
minimum downhill dominating set. Then,

dw(G, 2) =
(
n

2

)
−
(
n− d

2

)
, ..., dw(G, n− d) =

(
n

n− d

)
−
(
n− d
n− d

)
.

For i = n− d+ 1, ..., n. Any i vertices are downhill dominating set of size i, then

dw(G, n− d+ 1) =
(

n

n− d+ 1

)
, ..., dw(G, n) =

(
n

n

)
.

Thus, we get

DW (G, x) =
[(
n

1

)
−
(
n− d

1

)]
x+ ...+

[(
n

n− d

)
−
(
n− d
n− d

)]
xn−d

+
(

n

n− d+ 1

)
xn−d+1 + ...+

(
n

n

)
xn

=
(
n

1

)
x+ ...+

(
n

n− d

)
xn−d + ...+

(
n

n

)
xn −

[(
n− d

1

)
x+ ...+

(
n− d
n− d

)
xn−d

]
= (1 + x)n − (1 + x)n−d

= (1 + x)n−d((1 + x)d − 1).

Proposition 2.7. Let G ∼= Sn be a star of n + 1 vertices, where n ≥ 2. Then, DW (G, x) =
x(1 + x)n. Furthermore, Zdw = {0,−1} .

Proof: Let G ∼= Sn be a star of n + 1 vertices, where n ≥ 2. It has only one downhill
dominating set of size one. Then, for i = 2, 3, ..., n + 1, there are

(
n
i−1

)
downhill dominating
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sets of size i. Thus, we have

DW (G, x) =
(
n

0

)
x+ +

(
n

1

)
x2 + ...+

(
n

n

)
xn+1

= x

[(
n

0

)
x0 +

(
n

1

)
x+ ...+

(
n

n

)
xn
]

= x(1 + x)n.

Proposition 2.8. Let G ∼= Sm,n be a double star graph of m+ n+ 2 vertices, where m,n ≥ 2.
Then,

DW (G, x) =

(1 + x)m+n(x2 + 2x) if n = m;
x(1 + x)d−1 if m > n ,where d = m+ n+ 2.

Proof: LetG ∼= Sm,n be a double star ofm+n+2 vertices, wherem,n ≥ 2. Let d = m+n+2,
we have two cases:
Case 1. If m = n. In this case, there are two minimal downhill dominating sets of size one.
Then, we have

dw(G, 1) =
(
d

1

)
−
(
d− 2

1

)
= 2.

For i = 2, 3, ..., d − 2. Every downhill dominating set of size i must be contains at least one
minimum downhill dominating set. Then,

dw(G, 2) =
(
d

2

)
−
(
d− 2

2

)
, ..., dw(G, d− 2) =

(
d

d− 2

)
−
(
d− 2
d− 2

)
.

For i = d− 1, d. Any i vertices are downhill dominating set of size i. Then

dw(G, d− 1) =
(

d

d− 1

)
, dw(G, d) =

(
d

d

)
.

Thus, we get

DW (G, x) =
[(
d

1

)
−
(
d− 2

1

)]
x+ ...+

[(
d

d− 2

)
−
(
d− 2
d− 2

)]
xd−2 +

(
d

d− 1

)
xd−1 +

(
d

d

)
xd

=
(
d

1

)
x+ ..+

(
d

d

)
xd −

[(
d− 2

1

)
x+ ...+

(
d− 2
d− 2

)
xd−2

]
= (1 + x)d − (1 + x)d−2



On the Downhill Domination Polynomial of Graphs 7

= (1 + x)d−2((1 + x)2 − 1).

Hence,
DW (G, x) = (1 + x)m+n(x2 + 2x).

Case 2. If m > n. In this case there is only one downhill dominating set of size one. Then, for
i = 2, 3, ..., d+ 1, there are

(
d−1
i−1

)
downhill dominating set of size i. Thus, we get

DW (G, x) =
(
d− 1

0

)
x+

(
d− 1

1

)
x2 + ...+

(
d− 1
d− 1

)
xd

= x

[(
d− 1

0

)
x0 +

(
d− 1

1

)
x+ ...+

(
d− 1
d− 1

)
xd−1

]
= x(1 + x)d−1.

Hence, DW (G, x) = x(1 + x)m+n+1.

Proposition 2.9. LetG ∼= Hn be a helm graph of 2n+1 vertices, where n > 5. Then,DW (G, x) =
x(1 + x)2n. Furthermore, Zdw = {0,−1}.

Proof: LetG ∼= Hn be a helm graph of 2n+1 vertices, where n > 5. It has only one minimum
downhill dominating set of size one. Then, for i = 2, 3, ..., 2n + 1, there are

(
2n
i−1

)
downhill

dominating set of size i. Thus, we have

DW (G, x) =
(

2n
0

)
x+

(
2n
1

)
x2 + ...+

(
2n
2n

)
x2n+1

= x

[(
2n
0

)
x0 +

(
2n
1

)
x+ ...+

(
2n
2n

)
x2n

]
= x(1 + x)2n.

Similarly to Proposition 2.9, we can prove the result for gear graph.

Proposition 2.10. Let G ∼= Gn be gear graph of 2n + 1 vertices, where n > 4. Then,
DW (G, x) = x(1 + x)2n. Furthermore, Zdw = {0,−1}.

Proposition 2.11. Let G be a Sierpinski Sieve graph of m vertices , where m = 3(3n−1+1)
2 .

Then,
DW (G, x) = (1 + x)3((1 + x)m−3 − 1).

Proof: Let G ∼= Sn be a Sierpinski Sieve graph of m vertices , where m = 3(3n−1+1)
2 . from the

definition of Sierpinski Sieve graph, clearly, there are m − 3 minimum downhill dominating
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sets of size one, then, we have

dw(G, 1) =
(
m

1

)
−
(

3
1

)
.

For i = 2, 3,

dw(G, 2) =
(
m

2

)
−
(

3
2

)
, dw(G, 3) =

(
m

3

)
−
(

3
3

)
.

Now, for i = 4, 5, ...,m. Any i vertices are downhill dominating set of size i. Then

dw(G, 4) =
(
m

4

)
, ..., dw(G,m) =

(
m

m

)
.

Thus, we get

DW (G, x) =
[(
m

1

)
−
(

3
1

)]
x+

[(
m

2

)
−
(

3
2

)]
x2 (1)

+
[(
m

3

)
−
(

3
3

)]
x3 +

(
m

4

)
x4 + · · ·+

(
m

m

)
xm

=
(
m

1

)
x+ ...+

(
m

m

)
xm −

[(
3
1

)
x+

(
3
2

)
x2 +

(
3
3

)
x3
]

= (1 + x)m − (1 + x)3

= (1 + x)3((1 + x)m−3 − 1).

Theorem 2.12. Let G ∼= Tm,n be a tadpole graph of m + n vertices. Then, DW (G, x) =
x(1 + x)m+n−1. Furthermore, Zdw(G) = {0,−1}.

Proof: Let G ∼= Tm,n be a tadpole graph of m+n vertices. It has only one minimum downhill
dominating set of size one. Let d = m + n, then for i = 2, 3, ..., d, there are

(
d−1
i−1

)
downhill

dominating set of size i. Thus, we get

DW (G, x) =
(
d− 1

0

)
x+

(
d− 1

1

)
x2 + ...+

(
d− 1
d− 1

)
xd

= x

[(
d− 1

0

)
x0 + ...+

(
d− 1
d− 1

)
xd−1

]
= x(1 + x)d−1.

Hence, DW (G, x) = x(1 + x)m+n−1.

Proposition 2.13. Let G ∼= Lm,n be lollipop graph of m + n vertices, then DW (G, x) =
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x(1 + x)m+n−1. Furthermore, Zdw(G) = {0,−1}.

Proof: The proof similarly to the the proof Theorem 2.12.

Proposition 2.14. LetG be barbell graph of 2n vertices. Then,DW (G, x) = (1+x)2(n−1)(x2+
2x). Furthermore, Zdw(G) = {0,−1,−2}.

Proof: Let G be barbell graph of 2n vertices. There are two vertices of degree n and all the
other vertices are of degree n− 1 so the graph has two minimum downhill dominating sets of
size one. Then, we have

dw(G, 1) =
(

2n
1

)
−
(

2n− 2
1

)
.

For i = 2, 3, ..., 2n− 2. Every downhill dominating set of size i must be at least one of the two
vertices of degree n− 1.

dw(G, 2) =
(

2n
2

)
−
(

2n− 2
2

)
, ..., dw(G, 2n− 2) =

(
2n

2n− 2

)
−
(

2n− 2
2n− 2

)
.

For i = 2n− 1, 2n. Any i vertices are downhill dominating set of size i. Then
dw(G, 2n− 1) =

(
2n

2n−1

)
and dw(G, 2n) =

(
2n
2n

)
. Thus, we get

DW (G, x) =
[(

2n
1

)
−
(

2n− 2
1

)]
x+ ...+

[(
2n

2n− 2

)
−
(

2n− 2
2n− 2

)]
x2n−2

+
(

2n
2n− 1

)
x2n−1 +

(
2n
2n

)
x2n

=
(

2n
1

)
x+ ...+

(
2n
2n

)
x2n −

[(
2n− 2

1

)
x+ ...+

(
2n− 2
2n− 2

)
x2n−2

]
= (1 + x)2n − (1 + x)2n−2

= (1 + x)2n−2((1 + x)2 − 1).

Hence,
DW (G, x) = (1 + x)2(n−1)(x2 + 2x).

Also it is obviously that Zdw(G) = {0,−1,−2}.

Proposition 2.15. Let G ∼= Pn�Pm be the grid graph of mn vertices, where m,n ≥ 3. Then,

DW (G, x) = (1 + x)2(n+m−2)((1 + x)(m−2)(n−2) − 1).

Proof: Let G ∼= Pn�Pm be the grid graph of mn vertices, where m,n ≥ 3. There are (m −
2)(n−2) minimum downhill dominating sets of size one. Let d = mn and t = (m−2)(n−2).
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Then, we have

dw(G, 1) =
(
d

1

)
−
(
d− t

1

)
= t.

For i = 2, 3, ..., d− t. Every downhill dominating set of size i must contains at least one vertex
from the t vertices which is of degree 4.

dw(G, 2) =
(
d

2

)
−
(
d− t

2

)
, ..., dw(G, d− t) =

(
d

d− t

)
−
(
d− t
d− t

)
.

Now, for i = d− t+ 1, ..., d. Any i vertices are downhill dominating set of size i. Then

dw(G, d− t+ 1) =
(

d

d− t+ 1

)
, ..., dw(G, d) =

(
d

d

)
.

Thus, we get

DW (G, x) =
[(
d

1

)
−
(
d− t

1

)]
x+ ...+

[(
d

d− t

)
−
(
d− t
d− t

)]
xd−t (2)

+
(

d

d− t+ 1

)
xd−t+1 + ...+

(
d

d

)
xd

=
(
d

1

)
x+ ...+

(
d

d

)
xd −

[(
d− t

1

)
x+ ...+

(
d− t
d− t

)
xd−t

]
= (1 + x)d − (1 + x)d−t

= (1 + x)d−t((1 + x)t − 1).

Hence, DW (G, x) = (1 + x)2(n+m−2)((1 + x)(m−2)(n−2) − 1).

Them-book graphBm is defined as the graph Cartesian product Sm�P2 , where Sm is a star
graph of m + 1 vertices and P2 is the path graph . The generalization of book graph is called
stacked book graph Bm,n of order (m,n) and defined as the graph Cartesian product Sm�Pn,
where Sm is a star graph of m+ 1 vertices and Pn [3, 5].

Theorem 2.16. Let G ∼= Bm be a book graph of 2(m + 1) vertices, where m ≥ 2. Then,
DW (G, x) = (1 + x)2m(x2 + 2x). Furthermore, Zdw(G) = {0,−1,−2}.

Proof: Let G ∼= Bm be a book graph of 2(m + 1) vertices, where m ≥ 2. We know that
γdn(G) = 1 and there are two minimum downhill dominating sets of size one. Let n =
2(m+1), then dw(G, 1) =

(
n
1

)
−
(
n−2

1

)
= 2. For i = 2, 3, ..., n−2. Every downhill dominating
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set of size i must be contains at least one of the two vertices which of degree m, so

dw(G, 2) =
(
n

2

)
−
(
n− 2

2

)
, ..., dw(G, n− 2) =

(
n

n− 2

)
−
(
n− 2
n− 2

)
.

Now, any n − 1 and n vertices are downhill dominating set. dw(G, n − 1) =
(

n
n−1

)
and

dw(G, n) =
(
n
n

)
. Thus, we get

DW (G, x) =
[(
n

1

)
−
(
n− 2

1

)]
x+ ...+

[(
n

n− 2

)
−
(
n− 2
n− 2

)]
xn−2 +

(
n

n− 1

)
xn−1 +

(
n

n

)
xn

=
(
n

1

)
x+

(
n

2

)
x2 + ...+

(
n

n

)
xn −

[(
n− 2

1

)
x+

(
n− 2

2

)
x2 + ...+

(
n− 2
n− 2

)
xn−2

]
= (1 + x)n − (1 + x)n− 2

= (1 + x)n−2((1 + x)2 − 1).

Hence, DW (G, x) = (1 + x)2m(x2 + 2x).

The generalization of Theorem 2.16 is obtained in Theorem 2.17

Figure 1: Stacked book graph Bm,t.

Theorem 2.17. LetG ∼= Bm,t be stacked book graph of t(m+1) vertices as in Figure 1, where
m ≥ 2 and t > 3. Then, DW (G, x) = (1 + x)tm+2((1 + x)t−2 − 1).

Proof: Let G ∼= Bm,t be stacked book graph of t(m + 1) vertices, where m ≥ 2 and t > 3 as
in Figure 1. It has t− 2 minimum downhill dominating sets of size one (red vertices). Suppose
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that n = t(m+ 1), then

dw(G, 1) =
(
n

1

)
−
(
n− t+ 2

1

)
= t− 2.

For i = 2, 3, ..., n − t + 2. Every downhill dominating set of size i must be contains at least
one vertex of the degree m+ 2 (red vertices).

dw(G, 2) =
(
n

2

)
−
(
n− t+ 2

2

)
, ..., dw(G, n− t+ 2) =

(
n

n− t+ 2

)
−
(
n− t+ 2
n− t+ 2

)
.

For i = n− t+ 3, ..., n. Any i vertices are downhill dominating set of size i.

dw(G, n− t+ 3) =
(

n

n− t+ 3

)
, ..., dw(G, n) =

(
n

n

)
.

Thus, we get

DW (G, x) =
[(
n

1

)
−
(
n− t+ 2

1

)]
x+

[(
n

2

)
−
(
n− t+ 2

2

)]
x2 + ...+

(
n

n

)
xn

=
(
n

1

)
x+ ...+

(
n

n

)
xn −

[(
n− t+ 2

1

)
x+ ...+

(
n− t+ 2
n− t+ 2

)
xn−t+2

]
= (1 + x)n − (1 + x)n−t+2

= (1 + x)n−t+2((1 + x)t−2 − 1).

Hence, DW (G, x) = (1 + x)tm+2((1 + x)t−2 − 1).

Proposition 2.18. Let G ∼= Cn�Pm be the graph with nm vertices, where m ≥ 3. Then

DW (G, x) = (1 + x)2n((1 + x)n(m−2) − 1).

Proof: LetG ∼= Cn�Pm be the graph with nm vertices, wherem ≥ 3. The graph has n(m−2)
minimum downhill dominating sets of size one. Then,

dw(G, 1) =
(
nm

1

)
−
(

2n
1

)
= n(m− 2).

For i = 2, 3, ..., 2n. Every downhill dominating set inGmust be contains at least one minimum
downhill dominating set.

dw(G, 2) =
(
nm

2

)
−
(

2n
2

)
, ..., dw(G, 2n) =

(
nm

2n

)
−
(

2n
2n

)
.
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For, i = 2n+ 1, ..., nm. Any i vertices are downhill dominating set of size i. Then.

dw(G, 2n+ 1) =
(

nm

2n+ 1

)
, ..., dw(G, nm) =

(
nm

nm

)
.

Thus, we get

DW (G, x) =
(
nm

1

)
x+

(
nm

2

)
x2 + ...+

(
nm

nm

)
xnm−

[(
2n
1

)
x+

(
2n
2

)
x2 + ...+

(
2n
2n

)
x2n

]
.

Hence, DW (G, x) = (1 + x)2n((1 + x)n(m−2) − 1).

Corollary 2.19. For any connected regular graphGwith n vertices andm ≥ 3, thenDW (G�Pm, x) =
(1 + x)2n((1 + x)n(m−2) − 1).

Finally, we get two general results for the downhill domination polynomial of graphs.

Theorem 2.20. Let G be a graph of n vertices with γdn(G) = 1 and has r minimum downhill
dominating sets. Then, DW (G, x) = (1 + x)n − (1 + x)n−r.

Proof: Let G be a graph of n vertices with γdn(G) = 1 and has r minimum downhill domi-
nating sets. Then, we have

dw(G, 1) =
(
n

1

)
−
(
n− r

1

)
= r.

For i = 2, ..., n − r. Every downhill dominating set of size i must be contains at least one
minimum downhill dominating set. Then

dw(G, 2) =
(
n

2

)
−
(
n− r

2

)
, ..., dw(G, n− r) =

(
n

n− r

)
−
(
n− r
n− r

)
.

For i = n− r + 1, ..., n. Any i vertices are downhill dominating set of size i. Then

dw(G, n− r + 1) =
(

n

n− r + 1

)
, ..., dw(G, n) =

(
n

n

)
.

Thus, we get

DW (G, x) =
[(
n

1

)
−
(
n− r

1

)]
x+ ...+

[(
n

n− r

)
−
(
n− r
n− r

)]
xn−r

+
(

n

n− r + 1

)
xn−r+1 + ...+

(
n

n

)
xn
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=
(
n

1

)
x+ ...+

(
n

n− r

)
xn−r + ...+

(
n

n

)
xn −

[(
n− r

1

)
x+ ...+

(
n− r
n− r

)
xn−r

]
= (1 + x)n − (1 + x)n−r

By using Matlab 2017, we have write code to calculate the downhill domination roots of the
graph of n vertices with γdn(G) = 1 and has r minimum downhill dominating sets.

In Figure 2, we present the behaviors and positions of the downhill domination roots of all
the graphs of n ≤ 20 vertices with γdn(G) = 1 and has r ≤ 20 minimum downhill dominating
sets.

Figure 2: The positions of downhill domination roots of all the possibilities of the graphs of
n ≤ 20 vertices with γdn(G) = 1 and has r ≤ 20 minimum downhill dominating sets

In the same way in Figure 3, we present the behaviors and positions of the downhill domi-
nation roots of all the possibilities of the graphs of n ≤ 100 vertices with γdn(G) = 1 and has
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r ≤ 100 minimum downhill dominating sets.

Figure 3: The positions of downhill domination roots of all the possibilities of the graphs of
n ≤ 100 vertices with γdn(G) = 1 and has r ≤ 100 minimum downhill dominating sets

Theorem 2.21. Let G be a graph of n vertices with unique minimum downhill dominating set
with size s. Then DW (G, x) = xs(1 + x)n−s.

Proof: LetG be a graph of n vertices with unique minimum downhill dominating set with size
s. This means, dw(G, s) = 1. Then, for i = s + 1, ..., n, there are

(
n−s
i−s

)
downhill dominating

set of size i. Thus, we get

DW (G, x) =
(
n− s

0

)
xs +

(
n− s

1

)
xs+1 + ...+

(
n− s
n− s

)
xn

= xs
[(
n− s

0

)
x0 +

(
n− s

1

)
x+ ...+

(
n− s
n− s

)
xn−s

]
= xs(1 + x)n−s.
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