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Abstract
Let T be a tree of order n, n ≥ 2. A pathos square graph of T , written PG2(T ),

is a graph whose vertices are the vertices and paths of a pathos of T , with two vertices
of PG2(T ) adjacent whenever the distance between the corresponding vertices of T is at
most two; or the corresponding paths P

′
i and P

′
j , i 6= j of a pathos of T have a vertex

in common; or one corresponds to the path P
′

and the other to a vertex v of T and P
′

begins (or ends) at v such that v is a pendant vertex. For this class of graphs we discuss the
planarity; outerplanarity; maximal outerplanarity; minimally nonouterplanarity; Eulerian;
and Hamiltonian properties.
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1 Introduction
For graph theoretic terminology we refer to Harary [1]. There are many graph operators (or
graph valued functions) with which one can construct a new graph from a given graph, such as
the line graph, the total graph, and their generalizations. One such graph operator is called the
square graph. This was introduced by Ross et al. in [3], and studied in [6].

Let G = (V,E) be a graph of order n, n ≥ 2. The square of G, written G2, is that graph
having the same vertex set as G, where two vertices are adjacent in G2 if the distance between
these two vertices in G is at most two.

An example of a graph G and its square G2 is given in Figure.1.

Figure.1
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The line graph of a graph G, written L(G), is the graph whose vertices are the edges of G,
with two vertices of L(G) adjacent whenever the corresponding edges of G have a vertex in
common. The concept of pathos of a graph G was introduced by Harary [2] as a collection of
minimum number of edge disjoint open paths whose union is G. The path number of a graph
G is the number of paths in any pathos. The path number of a tree T equals k, where 2k is the
number of odd degree vertices of T .

Muddebihal et al. in [5] extended the concept of pathos of graphs to trees there by introduc-
ing a graph operator called a pathos line graph of a tree T . A pathos line graph of a tree T ,
written PL(T ), is a graph whose vertices are the edges and paths of a pathos of T , with two
vertices of PL(T ) adjacent whenever the corresponding edges of T have a vertex in common
or the edge lies on the corresponding path of the pathos.

Figure.2 gives an example of a tree along with pathos (indicated by dotted lines) and its
pathos line graph.

Figure 2

A pathos vertex of PL(T ) is a vertex corresponding to the path of a pathos of T . For
example, the trees (on the left) of Figure.2 contains three paths of pathos, say P ′

1, P
′
2, and P ′

3.
Thus P ′

1, P
′
2, and P ′

3 are the pathos vertices of the corresponding pathos line graph PL(T ) (on
the right) of Figure.2.

Motivated by the studies above, we define a new graph operator called a pathos square

graph of a tree.
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2 Preliminaries

A graph G = (V,E) is a pair, consisting of some set V , the so-called vertex set, and some
subset E of the set of all 2-element subsets of V , the edge set. We write x = (p, q) and say
that p and q are adjacent vertices (sometimes denoted p adj q). The degree of a vertex v in
G, denoted by deg(v), is the number of edges of G incident with v, each loop counting as two
edges. We denote by ∆(G) the maximum degree of the vertex of G. A pendant vertex is a
vertex of degree 1 and an internal vertex is a vertex of degree at least 2.

A planar graph is a graph that can be embedded in the plane, i.e., it can be drawn on the
plane in such a way that its edges intersect only at their end vertices. In other words, it can be
drawn in such a way that no edges cross each other. Such a drawing is called a plane graph or
planar embedding of the graph. If a planar graph G is embeddable in the plane so that all the
vertices are on the boundary of the exterior region, then G is said to be outerplanar.

An outerplanar graph G is maximal outerplanar if no edge can be added without losing
outerplanarity. For a planar graph G, the inner vertex number i(G) is the minimum number
of vertices not belonging to the boundary of the exterior region in any embedding of G in the
plane. The least number of edge crossings of a graph G, among all planar embeddings of G, is
called the crossing number of G and is denoted by cr(G).

2.1 Definition of PG2(T )

Let T be a tree of order n, n ≥ 2. A pathos square graph of T , written PG2(T ), is a graph
whose vertices are the vertices and paths of a pathos of T , with two vertices of PG2(T ) ad-
jacent whenever the distance between the corresponding vertices of T is at most two; or the
corresponding paths P ′

i and P ′
j (i 6= j) of a pathos of T have a vertex in common; or one

corresponds to the path P ′ and the other to a vertex v of T and P ′ begins (or ends) at v such
that v is a pendant vertex.

See Figure.3 for an example of a tree along with pathos (indicated by dotted lines) and its
pathos square graph.
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Figure 3

Note that there is freedom in marking the paths of a pathos of a tree T in different ways,
provided that the path number k of T is fixed. For example, consider the marking of the paths
of pathos of trees (on the left) of Figure.2, where k = 3. Therefore, we conclude that since
the order of marking of the paths of a pathos of a tree is not unique, the corresponding pathos
square graph is also not unique. This obviously raises the question of the existence of “unique”
pathos square graph.

One can easily check that if the path number of a tree is exactly one, i.e., k=1, then the
corresponding pathos square graph is unique. Since path number of a path Pn on n ≥ 2 vertices
is one, we can speak of “the” pathos square graph only for paths, i.e., the pathos square graph
of a path is unique. Furthermore, one can also observe easily that for different ways of marking
of the paths of a pathos of a star graph K1,n on n ≥ 3 vertices, the corresponding pathos square
graphs are isomorphic.

In this paper we look at some properties of PG2(T ). For this class of graphs we also discuss
the planarity; outerplanarity; maximal outerplanarity; minimally nonouterplanarity; Eulerian;
and Hamiltonian properties of these graphs.

3 Properties of pathos square graphs
In this section we study certain properties of pathos square graph.

Property 3.1. A pathos square graph does not contain any cut-vertex. Hence it is always a

block.
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Property 3.2. Let e = (v1, v2) be an edge in T such that deg(v1) = 1 and deg(v2) > 1. Then

deg(v1) in PG2(T ) equals deg(v2) + 1.

Property 3.3. Let e = (v1, v2) be an edge in T such that deg(v1) > 1 and deg(v2) > 1. Then

deg(v1) (or deg(v2)) in PG2(T ) equals deg(v1) + deg(v2)− 1.

Property 3.4. If T is a path of order two and three, then the inner vertex number of PG2(T )
is zero, that is, i(PG2(T )) = 0. If T = P4, then i(PG2(T )) = 1. Furthermore, if T is a path

of order (2n+ 3) and (2n+ 4) for n ≥ 1, then i(PG2(T )) = n+ 1.

Property 3.5. Let T = {v1, v2, . . . , vn} be a path of order n ≥ 3. Then the degree of the

vertices v1 and vn in PG2(T ) is three.

Property 3.6. Let T be a tree of order n (n ≥ 3). Then the number of edges whose end-

vertices are the pathos vertices in PG2(T ) is at most k(k−1)
2 , where k is the path number of

T . In particular, if T is a star graph K1,n on n ≥ 3 vertices, then the number of edges whose

end-vertices are the pathos vertices in PG2(T ) is exactly k(k−1)
2 , i.e., in a pathos square graph

of a star graph, the pathos vertices are pairwise adjacent.

While defining any class of graphs, it is desirable to know the order and size of each. In
order to find the order and size of PG2(T ), we first find the order and size of the square of a
tree.

Let V (T ) = {v1, v2, . . . , vn} be vertex set of T and let α and β be number of internal and
pendant vertices of T , respectively. Clearly, n = α + β, and thus α = n− β.

Our next two results give the order and size of the square of a tree. The proof is straightfor-
ward, so we omit it.

Proposition 3.7. Let T be a path Pn on n ≥ 3 vertices and α1, α2, . . . , αn−2 be internal

vertices of T . Then the size of T 2 equals
n−2∑
i=1
{deg(αi)}+ 1.

Proposition 3.8. Let T be a tree (except a path) on n ≥ 3 vertices, and let α1, α2, . . . , αn−β

be internal vertices of T and s be the degree of each internal vertex of T . For each internal

vertex, let bl = l for (1 ≤ l ≤ s). Then the size of T 2 equals
n−β∑
i=1

s∑
j=1

aibj , where ai = 1 for

1 ≤ i ≤ n− β.

Our next result gives the number of pendant vertices in a tree T which is also essential while
finding the size of PG2(T ).
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Proposition 3.9. Let T be a tree with vertex set V (T ) = {v1, v2, . . . , vn}. Then the number of
pendant vertices in T is 2 +

∑
deg(v)≥3

(deg(v)− 2).

Proof: Let T be a tree with vertex set V (T ) = {v1, v2, . . . , vn}. Let β be the number of
pendant vertices in T . By the handshaking lemma, we have

∑
v∈T

deg(v) = 2(n− 1) = 2n− 2.

⇒ −2 =
∑
v∈T

deg(v)− 2n

⇒ −2 =
∑
v∈T

deg(v)−
∑
v∈T

2

⇒ −2 =
∑
v∈T

(deg(v)− 2). On taking the sum over the vertices of degree one and two, we get

−2 =
∑

deg(v)=1
(−1) +

∑
deg(v)=2

(0) +
∑

deg(v)≥3
(deg(v)− 2)

⇒ −2 = −β +
∑

deg(v)≥3
(deg(v)− 2)

⇒ β = 2 +
∑

deg(v)≥3
(deg(v)− 2).

The following result gives the order and size of PG2(T ).

Property 3.10. Let T be a tree with vertex set V (T ) = {v1, v2, . . . , vn}. Then the maximum

number edges in PG2(T ) is
n−β∑
i=1

s∑
j=1

aibj + 2 +
∑

deg(v)≥3
(deg(v)− 2) + k(k − 1)

2 , where k is the

path number, and α and β be the number of internal and pendant vertices of T , respectively.
Moreover, this bound is sharp.

Proof: Let T be a tree with vertex set V (T ) = {v1, v2, . . . , vn}. By definition, the order of
PG2(T ) equals the sum of vertices and the path number of T . Thus V (PG2(T )) = n + k.
The size of PG2(T ) equals the sum of size of T 2; number of pendant vertices in T ; and the
number of edges whose end-vertices are the pathos vertices. By Property 3.6, Proposition 3.8,
and Proposition 3.9, the maximum number edges in PG2(T ) equals
n−β∑
i=1

s∑
j=1

aibj + 2 +
∑

deg(v)≥3
(deg(v)− 2) + k(k − 1)

2 .

As an example, the tree in the following figure exhibits that the bound is sharp. Here the
size of PG2(T ) equals (3 + 2 + 1) + 2 + (3− 2) + 1 = 10.
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Figure 4: A tree and its pathos square graph

4 Characterization of PG2(T )
4.1 Planar pathos square graphs

We now characterize the graphs whose PG2(T ) is planar.

Theorem 4.1. A pathos square graph PG2(T ) of a tree T is planar if and only if the number
of pendant vertices in T is at most three.

Proof: Suppose PG2(T ) is planar. Assume that the number of pendant vertices in T is at
least four. Suppose it is four. Let T = P2 × P3 − 2e, where e is an edge between the even
degree vertices of P2×P3. Let V (T ) = {v1, v2, v3, v4, v5, v6} be vertex set of T . By definition,
T 2 = K6 \ {(v1, v5), (v1, v6), (v3, v5), (v3, v6)}. Clearly the crossing number of T 2 is two, i.e.,
cr(T 2) = 2. Since T 2 ⊆ PG2(T ), it contradicts the assumption that cr(PG2(T )) = 0.

Conversely, suppose that the number of pendant vertices in T at most three. We consider
the following two cases.
Case 1: If T = P2, then PG2(P2) = K3, which is planar. If T = P3, then PG2(P2) ∼= K4− e,
which is also planar. On the other hand, let T be a path on n ≥ 4 vertices. Let V (T ) =
{v1, v2, . . . , vn}. Then (vi, vi+1) for 1 ≤ i ≤ n − 1 and (vj, vj+2) for 1 ≤ j ≤ n − 2, are the
edges of T 2. Since the path number of T is one, say P ′ and P ′ is adjacent to both v1 and vn,
the crossing number of PG2(T ) becomes zero. Thus PG2(T ) is planar.
Case 2: Suppose now that the number of pendant vertices of T is three, i.e., T ∼= K1,3. Let
V (T ) = {v1, v2, v3, v4}. Then T 2 = K4. Let P (T ) = {P ′

1, P
′
2} be a pathos set of T such that

P
′
1 lies on the arcs (v1, v2), (v2, v3) and P ′

2 lies on (v2, v4). Then the pathos vertex P ′
1 is adjacent

to v2, v3, P
′
2 and P ′

2 is adjacent to v4. This shows that cr(PG2(T )) = 0. This completes the
proof.

We now establish a characterization of graphs whose PG2(T ) are outerplanar; maximal
outerplanar; minimally nonouterplanar; and crossing number one.
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Theorem 4.2. A pathos square graph PG2(T ) of a tree T is outerplanar if and only if ∆(T ) ≤
2, for every vertex v ∈ T , and T contains exactly one vertex of degree two.

Proof: Suppose PDP (T ) is outerplanar. Assume that ∆(T ) ≤ 2 and T contains two vertices
of degree two. Then T ' P4. By Case 1 of sufficiency of Theorem 4.1, cr(PG2(T )) = 0 and
by Property 3.4, i(PG2(T )) = 1, a contradiction. On the other hand, if there exists a vertex of
degree three in T . Then T ' K1,3. By Case 2 of sufficiency of Theorem 4.1, cr(PG2(T )) = 0,
but i(PG2(T )) = 2, again a contradiction.

Conversely, suppose that ∆(T ) ≤ 2, for every vertex v ∈ T , and T contains exactly one
vertex of degree two, i.e., T ∼= P3. By definition, PG2(T ) ∼= K4 − e, which is outerplanar.
This completes the proof.

Theorem 4.3. A pathos square graph PG2(T ) of a tree T is maximal outerplanar if and only
if T is either P2 or P3.

Proof: Suppose PG2(T ) is maximal outerplanar. Assume that there exists a vertex of degree
three in T . By Theorem 4.2, PG2(T ) in nonouterplanar, a contradiction. On the other hand, if
T is a path of order n (n ≥ 4), then Property 3.4 implies that PG2(T ) is nonouterplanar, again
a contradiction.

Conversely, suppose that T is P2. Then PG2(T ) = K3, which is maximal outerplanar. On
the other hand, if T is P3, then PG2(T ) ∼= K4 − e, which is also maximal outerplanar. This
completes the proof.

The following characterization of minimally nonouterplanar graphs is well known.

Theorem 4.4. (V. R. Kulli [4]) : A graph G is minimally nonouterplanar if and only if the
inner vertex number of G is one, i.e., i(G) = 1.

Theorem 4.5. A pathos square graph PG2(T ) of a tree T is minimally nonouterplanar if and
only if T is P4.

Proof: Suppose PG2(T ) is minimally nonouterplanar. Assume that T = P5. By Property 3.4,
i(PG2(T )) = 2, a contradiction.

Conversely, suppose that T = P4. By Property 3.4, i(PG2(T )) = 1, and thus Theorem 4.4
implies that PG2(T ) is minimally nonouterplanar. This completes the proof.

Theorem 4.6. For any tree T , PG2(T ) does not have crossing number one.
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Proof: We use contradiction. Suppose that PG2(T ) has crossing number one. We consider
the following two cases.
Case 1: Suppose that ∆(T ) ≤ 2. By Theorem 4.1, PG2(T ) is planar, a contradiction.
Case 2: Suppose that ∆(T ) ≥ 3. If there exists a vertex of degree three in T , then Case 2 of
Theorem 4.1 implies that cr(PG2(T )) = 0, a contradiction. On the other hand, if there exists
two vertices of degree three in T , then the necessity of Theorem 4.1 implies that cr(T 2) = 0,
but cr(PG2(T )) > 1, again a contradiction. Hence by all the cases above, cr(PG2(T )) 6= 1.
This completes the proof.

4.2 Eulerian pathos square graphs

A tour of a connected graph G is a closed walk that traverses each edge of G at least once, and
an Euler tour one that traverses each edge exactly once (in other words, a closed Euler trail).
A graph is Eulerian if it admits an Euler tour.

We now investigate the Eulerian property of PG2(T ). The following result is well known.

Theorem 4.7. (F. Harary [1]) : A connected graph G is Eulerian if and only if each vertex in
G has even degree.

Theorem 4.8. Let T be a tree (except a path Pn) of order n (n ≥ 3). Then a pathos square
graph PG2(T ) of T is Eulerian if and only if the number of pendant vertices in T is two.

Proof: Suppose that PG2(T ) is Eulerian. Assume that the number of pendant vertices in
T is at least three. If there exists three vertices of degree one in T , i.e., T = K1,3, then
PG2(T ) contains K4 as an induced subgraph. By Theorem 4.7, PG2(T ) is non-Eulerian, a
contradiction.

Conversely, suppose that the number of pendant vertices in T (except a path Pn of order
n ≥ 3) is two. By definition, PG2(T ) = K3, which is Eulerian. This completes the proof.

4.3 Hamiltonian pathos square graphs

A Hamiltonian cycle is a cycle that visits each vertex exactly once (except for the vertex that is
both the initial and end, which is visited twice). A graph that contains a Hamiltonian cycle is
called a Hamiltonian graph.

We characterize the graphs whose PG2(T ) is Hamiltonian.

Theorem 4.9. A pathos square graph PG2(T ) of a tree T is Hamiltonian if T is a path of order
n, n ≥ 3.
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Proof: Suppose that T is a path of order n, n ≥ 3. Clearly, the path number of T is exactly
one, say P ′ . Let V (T ) = {v1, v2, . . . , vn} be the vertex set T . Then {v1, v2, . . . , vn} ∪ P

′ is
the vertex set of PG2(T ). In forming PG2(T ), P ′ becomes a vertex adjacent to the vertices
v1 and v2 of T 2. Also, the edges (vi, vi+1) and (vi, vi+2) for 1 ≤ i ≤ n− 2; and (vn−1, vn) for
n ≥ 3, exists in PG2(T ). Clearly, there exist a cycle P ′

, v1, v2, . . . , vn, P
′ containing all the

vertices of PG2(T ). Hence PG2(T ) is Hamiltonian.
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