

Seidel Laplacian Energy of Graphs

H.S. Ramane and R.B. Jummannaver

Department of Mathematics
Karnatak University, Dharwad - 580003
Karnataka, India
hsramane@yahoo.com, rajesh.rbj065@gmail.com

I. Gutman

Faculty of Science
University of Kragujevac, 34000 Kragujevac
Serbia
gutman@kg.ac.rs

Abstract

The Seidel matrix of the graph G of order n and of size m is defined as $S(G) = (s_{ij})$, where $s_{ij} = -1$ if the vertices v_i and v_j are adjacent, $s_{ij} = 1$ if the vertices v_i and v_j are not adjacent, and $s_{ij} = 0$ if i = j. Let $D_S(G) = diag(n - 1 - 2d_1, n - 1 - 2d_2, \ldots, n - 1 - 2d_n)$ be a diagonal matrix in which d_i is the degree of the vertex v_i . The Seidel Laplacian matrix of G is defined as $S_L(G) = D_S(G) - S(G)$. If $\sigma_1^L, \sigma_2^L, \ldots, \sigma_n^L$ are the eigenvalues of $S_L(G)$, then the Seidel Laplacian energy of G is $\sum_{i=1}^n \left| \sigma_i^L - \frac{n(n-1)-4m}{n} \right|$. We establish the main properties of the eigenvalues of $S_L(G)$ and of Seidel Laplacian energy.

Key words: Seidel Laplacian matrix, Seidel Laplacian eigenvalues, Seidel Laplacian energy.

2010 Mathematics Subject Classification: 05C50

1 Introduction

Let G be a simple, undirected graph with n vertices and m edges. Let v_1, v_2, \ldots, v_n be the vertices of G. The degree of a vertex v_i is the number of edges incident to it and is denoted by d_i . If $d_i = r$ for all $i = 1, 2, \ldots, n$, then G is said to be an r-regular graph. The adjacency matrix of a graph G is the square matrix $A(G) = [a_{ij}]$, in which $a_{ij} = 1$

^{*} Corresponding Author: H.S. Ramane

Ψ Received on August 11, 2017 / Revised on October 20, 2017 / Accepted on October 20, 2017

if v_i is adjacent to v_j and $a_{ij} = 0$ otherwise. If $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the eigenvalues of A(G) then the ordinary energy of a graph G is defined as [11]

$$E(G) = \sum_{i=1}^{n} |\lambda_i|. \tag{1}$$

More results on the ordinary graph energy can be found in the book [17].

Let $D(G) = diag(d_1, d_2, ..., d_n)$ be the diagonal matrix of vertex degrees. The Laplacian matrix of G is defined as L(G) = D(G) - A(G). Let $\mu_1, \mu_2, ..., \mu_n$ be its eigenvalues. Then the Laplacian energy of G is defined as [13]

$$LE(G) = \sum_{i=1}^{n} \left| \mu_i - \frac{2m}{n} \right|. \tag{2}$$

The Seidel matrix of a graph G is the $n \times n$ real symmetric matrix $S(G) = (s_{ij})$, where $s_{ij} = -1$ if the vertices v_i and v_j are adjacent, $s_{ij} = 1$ if the vertices v_i and v_j are not adjacent, and $s_{ij} = 0$ if i = j. The eigenvalues of the Seidel matrix, labeled as $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n$, are said to be the Seidel eigenvalues of G and their collection is the Seidel spectrum of G [3]. In parallel with Eq. (1), the Seidel energy of the graph G is defined as [14]

$$SE = SE(G) = \sum_{i=1}^{n} |\sigma_i|. \tag{3}$$

Recent results on Seidel energy are reported in [10, 19, 20, 23, 24]. It is easy to see that $S(G) = A(\overline{G}) - A(G)$, where \overline{G} is the complement of the graph G.

Motivated by the numerous results obtained in the theory of Laplacian energy (see the recent papers [4–7, 16] and the references cited therein), we now put forward the concept of Seidel Laplacian matrix and then examine the Seidel Laplacian energy.

Let $D_S(G) = diag(n-1-2d_1, n-1-2d_2, \ldots, n-1-2d_n)$. Then the Seidel Laplacian matrix of G is defined as

$$S_L(G) = D_S(G) - S(G).$$

Note that $D_S(G) = D(\overline{G}) - D(G)$ and $S_L(G) = L(\overline{G}) - L(G)$.

Let $\sigma_1^L, \sigma_2^L, \ldots, \sigma_n^L$, be the eigenvalues of $S_L(G)$. In analogy to Eq. (2), we define the Seidel Laplacian energy of G as $SLE = SLE(G) = \sum_{i=1}^n \left| \sigma_i^L - \frac{n(n-1)-4m}{n} \right|$.

If we denote

$$\xi_i = \sigma_i^L - \frac{n(n-1) - 4m}{n}$$
 for $i = 1, 2, \dots, n$, (4)

then,

$$SLE(G) = \sum_{i=1}^{n} |\xi_i|.$$
 (5)

2 Seidel Laplacian eigenvalues

It is well known that the adjacency and Laplacian eigenvalues satisfies the relations

$$\sum_{i=1}^{n} \lambda_i = 0 \quad \text{and} \quad \sum_{i=1}^{n} \lambda_i^2 = 2m,$$

$$\sum_{i=1}^{n} \mu_i = 2m \quad \text{and} \quad \sum_{i=1}^{n} \mu_i^2 = 2m + Z_1(G),$$

where $Z_1(G) = \sum_{i=1}^n d_i^2$ is the so-called *first Zagreb index*, whose mathematical properties have been studied in due detail (see [2, 12]).

Lemma 2.1. Let G be a graph with n vertices and m edges. Then the eigenvalues σ_i^L , i = 1, 2, ..., n, of the Seidel Laplacian matrix satisfy the relations

$$\sum_{i=1}^{n} \sigma_i^L = n(n-1) - 4m \text{ and } \sum_{i=1}^{n} (\sigma_i^L)^2 = n^2(n-1) - 8m(n-1) + 4Z_1(G).$$

Proof:

$$\sum_{i=1}^{n} \sigma_i^L = \operatorname{trace}[S_L(G)] = \sum_{i=1}^{n} (n-1-2d_i) = n(n-1) - 4m.$$

$$\sum_{i=1}^{n} (\sigma_i^L)^2 = \operatorname{trace}[S_L(G)^2] = \sum_{i=1}^{n} [(n-1-2d_i)^2 + (n-1)]$$
$$= n^2(n-1) - 8m(n-1) + 4Z_1(G).$$

Lemma 2.2. Let ξ_i be as defined above by Eq. (4). Then

$$\sum_{i=1}^{n} \xi_i = 0 \qquad \text{and} \qquad \sum_{i=1}^{n} \xi_i^2 = M$$

where

$$M = n(n-1) + 4Z_1(G) - \frac{16m^2}{n}.$$

Proof:

$$\sum_{i=1}^{n} \xi_{i} = \sum_{i=1}^{n} \left(\sigma_{i}^{L} - \frac{n(n-1) - 4m}{n} \right) = \sum_{i=1}^{n} \sigma_{i}^{L} - [n(n-1) - 4m]$$
$$= n(n-1) - 4m - [n(n-1) - 4m] = 0.$$

$$\sum_{i=1}^{n} \xi_{i}^{2} = \sum_{i=1}^{n} \left(\sigma_{i}^{L} - \frac{n(n-1) - 4m}{n} \right)^{2}$$

$$= \sum_{i=1}^{n} (\sigma_{i}^{L})^{2} - 2 \left(\frac{n(n-1) - 4m}{n} \right) \sum_{i=1}^{n} \sigma_{i}^{L} + \sum_{i=1}^{n} \left(\frac{n(n-1) - 4m}{n} \right)^{2}$$

$$= n^{2}(n-1) - 8m(n-1) + 4Z_{1}(G) - 2 \left(\frac{n(n-1) - 4m}{n} \right) [n(n-1) - 4m]$$

$$+ n \left[\frac{(n(n-1) - 4m)^{2}}{n^{2}} \right] = M.$$

Proposition 2.3. If σ_i^L , i = 1, 2, ..., n, are the Seidel Laplacian eigenvalues of G, then $-\sigma_i^L$, i = 1, 2, ..., n, are the Seidel Laplacian eigenvalues of \overline{G} .

Proof:
$$S_L(G) = L(\overline{G}) - L(G) = -S_L(\overline{G}).$$

Theorem 2.4. If $\sigma_1, \sigma_2, \ldots, \sigma_n$ are the Seidel eigenvalues of an r-regular graph G, then the Seidel Laplacian eigenvalues of G are $n-1-2r-\sigma_i$, $i=1,2,\ldots,n$.

Proof: If G is an r-regular graph then

$$S_L(G) = (n-1-2r)I - S(G)$$

where I is an identity matrix.

Lemma 2.5.

$$\left| \sum_{i < j} \xi_i \, \xi_j \right| = \frac{1}{2} \, M \, .$$

Proof: Since $\sum_{i=1}^n \xi_i = 0$, we get $\sum_{i=1}^n \xi_i^2 = -2 \sum_{i < j} \xi_i \xi_j$.

3 Seidel Laplacian energy

Results of this section are proved using the standard techniques from the theory of graph energy [8, 11, 13, 15, 18].

Theorem 3.1. Let G be a graph with n vertices and m edges. Then $SLE(G) \leq \sqrt{n \left[n(n-1) + 4Z_1(G) - \frac{16m^2}{n}\right]}$.

Proof: The Cauchy–Schwarz inequality states that,

$$\left(\sum_{i=1}^n a_i b_i\right)^2 \le \left(\sum_{i=1}^n a_i^2\right) \left(\sum_{i=1}^n b_i^2\right).$$

Let $a_i = 1$ and $b_i = |\xi_i|, i = 1, 2, ..., n$. Then

$$\left(\sum_{i=1}^{n} |\xi_i|\right)^2 \le n \sum_{i=1}^{n} |\xi_i|^2 = nM$$

implying

$$SLE(G)^{2} \le n \left[n(n-1) + 4Z_{1}(G) - \frac{16m^{2}}{n} \right].$$

Theorem 3.2. Let G be a graph with n vertices and m edges. Then

$$SLE(G) \ge \sqrt{2M}$$
.

Proof: From Eq. (5) it follows

$$SLE(G)^2 = \sum_{i=1}^{n} |\xi_i|^2 + 2\sum_{i < j} |\xi_i| |\xi_j|$$

$$\geq \sum_{i=1}^{n} |\xi_i|^2 + 2 \left| \sum_{i < j} \xi_i \xi_j \right| = M + M = 2M.$$

We now state four analytical inequalities that shall be needed in the subsequent considerations.

Lemma 3.3. [21] Suppose that a_i and b_i , $1 \le i \le n$, are positive real numbers. Then

$$\sum_{i=1}^{n} a_i^2 \sum_{i=1}^{n} b_i^2 \le \frac{1}{4} \left(\sqrt{\frac{M_1 M_2}{m_1 m_2}} + \sqrt{\frac{m_1 m_2}{M_1 M_2}} \right)^2 \left(\sum_{i=1}^{n} a_i b_i \right)^2$$

where $M_1 = \max_{1 \le i \le n} (a_i)$, $M_2 = \max_{1 \le i \le n} (b_i)$, $m_1 = \min_{1 \le i \le n} (a_i)$, and $m_2 = \min_{1 \le i \le n} (b_i)$.

Lemma 3.4. [22] Let a_i and b_i , $1 \le i \le n$, be non-negative real numbers. Then

$$\sum_{i=1}^{n} a_i^2 \sum_{i=1}^{n} b_i^2 - \left(\sum_{i=1}^{n} a_i b_i\right)^2 \le \frac{n^2}{4} \left(M_1 M_2 - m_1 m_2\right)^2$$

where M_i and m_i , i = 1, 2, are same as in Lemma 3.3.

Lemma 3.5. [9] Suppose that a_i and b_i , $1 \le i \le n$, are positive real numbers. Then

$$\left| n \sum_{i=1}^{n} a_i b_i - \sum_{i=1}^{n} a_i \sum_{i=1}^{n} b_i \right| \le \alpha(n)(A - a)(B - b)$$

where a, b, A and B are real constants, such that for each $i, 1 \le i \le n$, the conditions $a \le a_i \le A$ and $b \le b_i \le B$ are satisfied. Further, $\alpha(n) = n \left\lfloor \frac{n}{2} \right\rfloor \left(1 - \frac{1}{n} \left\lfloor \frac{n}{2} \right\rfloor \right)$.

Lemma 3.6. [1] Let a_i and b_i , $1 \le i \le n$, be non-negative real numbers. Then

$$\sum_{i=1}^{n} b_i^2 + rR \sum_{i=1}^{n} a_i^2 \le (r+R) \left(\sum_{i=1}^{n} a_i \, b_i \right)$$

where r and R are real constants, such that for each i, $1 \le i \le n$, the conditions $ra_i \le b_i \le Ra_i$ are satisfied.

Theorem 3.7. Let G be a graph with n vertices and m edges. Let ξ_i be defined as in Eq. (4). Let $\xi_{min} = \min_{1 \le i \le n} |\xi_i|$ and $\xi_{max} = \max_{1 \le i \le n} |\xi_i|$. Then

$$SLE(G) \ge \sqrt{nM - \frac{n^2}{4}(\xi_{max} - \xi_{min})^2}$$
 (6)

Proof: Apply Lemma 3.4 for $a_i = 1$ and $b_i = |\xi_i|$. This leads to

$$\sum_{i=1}^{n} 1^{2} \sum_{i=1}^{n} |\xi_{i}|^{2} - \left(\sum_{i=1}^{n} |\xi_{i}|\right)^{2} \leq \frac{n^{2}}{4} (\xi_{max} - \xi_{min})^{2}$$

$$nM - SLE(G)^{2} \leq \frac{n^{2}}{4} (\xi_{max} - \xi_{min})^{2}$$

and inequality (6) follows.

Theorem 3.8. Let G be a graph with n vertices and m edges and let ξ_{min} and ξ_{max} be same as in Theorem 3.7. Then

$$SLE(G) \ge \frac{4\sqrt{nM}\sqrt{\xi_{max}\,\xi_{min}}}{\xi_{max} + \xi_{min}}.$$
(7)

Proof: Using Lemma 3.3 and setting $a_i = |\xi_i|$ and $b_i = 1$, implies that

$$\sum_{i=1}^{n} |\xi_{i}|^{2} \sum_{i=1}^{n} 1^{2} \leq \frac{1}{4} \left(\sqrt{\frac{\xi_{min}}{\xi_{max}}} + \sqrt{\frac{\xi_{max}}{\xi_{min}}} \right)^{2} \left(\sum_{i=1}^{n} |\xi_{i}| \right)^{2}$$

$$nM \leq \frac{1}{4} \left(\frac{(\xi_{max} + \xi_{min})^{2}}{\xi_{max} \xi_{min}} \right) SLE(G)^{2}$$

and inequality (7) follows.

Theorem 3.9. Let G, ξ_{min} , and ξ_{max} be same as in the Theorem 3.7, and $\alpha(n)$ same as in Lemma 3.5. Then

$$SLE(G) \ge \sqrt{nM - \alpha(n) \left(\xi_{max} - \xi_{min}\right)^2}.$$
 (8)

Proof: Using Lemma 3.5 and setting $a_i = |\xi_i| = b_i$, $a = \xi_{min} = b$ and $A = \xi_{max} = B$ implies that

$$\left| n \sum_{i=1}^{n} |\xi_i|^2 - \left(\sum_{i=1}^{n} |\xi_i| \right)^2 \right| \leq \alpha(n) \left(\xi_{max} - \xi_{min} \right)^2$$

$$nM - SLE(G)^2 \leq \alpha(n) \left(\xi_{max} - \xi_{min} \right)^2$$

and inequality (8) follows.

Since $\alpha(n) \leq \frac{n^2}{4}$, according to Theorem 3.9 we have:

Corollary 3.10.
$$SLE(G) \ge \sqrt{nM - \frac{n^2}{4} \left(\xi_{max} - \xi_{min}\right)^2}$$
.

Theorem 3.11. Let G, ξ_{min} and ξ_{max} be same as in the Theorem 3.7 Then

$$SLE(G) \ge \frac{M + n \, \xi_{max} \, \xi_{min}}{(\xi_{max} + \xi_{min})} \,. \tag{9}$$

Proof: Apply Lemma 3.6 and set $b_i = |\xi_i|$, $a_i = 1$, $r = \xi_{min}$ and $R = \xi_{max}$, which implies

$$\sum_{i=1}^{n} |\xi_i|^2 + \xi_{max} \, \xi_{min} \sum_{i=1}^{n} 1 \leq (\xi_{max} + \xi_{min}) \sum_{i=1}^{n} |\xi_i|$$

$$M + n \, \xi_{max} \, \xi_{min} \leq (\xi_{max} + \xi_{min}) \, SLE(G)$$

and inequality (9) follows.

Acknowledgement. The author HSR is thankful to the University Grants Commission (UGC), Govt. of India for support through grant under UGC-SAP DRS-III, 2016-2021: F.510/3/DRS-III /2016 (SAP-I).

References

- [1] M. Biernacki, H. Pidek and C. Ryll–Nardzewski, Sur une inégalité entre des intégrales définies, Univ. Maria Curie–Sklodowska, A4 (1950), 1–4.
- [2] B. Borovićanin, K.C. Das, B. Furtula and I. Gutman, Bounds for Zagreb indices, MATCH Commun. Math. Comput. Chem., 78 (2017), 17–100.
- [3] A.E. Brouwer and W.H. Haemers, Spectra of Graphs, Springer, Berlin, (2012).
- [4] K.C. Das, E. Fritscher, L. Kowalski Pinheiro and V. Trevisan, Maximum Laplacian energy of unicyclic graphs, Discrete Appl. Math., 218 (2017), 71–81.
- [5] K.C. Das and S.A. Mojallal, Extremal Laplacian energy of threshold graphs, Appl. Math. Comput., 273 (2016), 267–280.
- [6] K.C. Das and S.A. Mojallal, On energy and Laplacian energy of graphs, El. J. Lin. Algebra, 31 (2016), 167–186.
- [7] K.C. Das, S.A. Mojallal and I. Gutman, On energy and Laplacian energy of bipartite graphs, Appl. Math. Comput., 273 (2016), 759–766.
- [8] N. De, On eccentricity version of Laplacian energy of a graph, Math. Interdisc. Res., 2 (2017), 131–139.
- [9] J.B. Diaz and F.T. Metcalf, Stronger forms of a class of inequalities of G.Pólya-G.Szegő and L.V. Kantorovich, Bull. Am. Math. Soc., 69 (1963), 415–418.

- [10] E. Ghorbani, On eigenvalues of Seidel matrices and Haemers conjecture, Designs, Codes Cryptography, 84 (2017), 189–195.
- [11] I. Gutman, The energy of a graph, Ber. Math. Stat. Sekt. Forschungsz. Graz, 103 (1978), 1–22.
- [12] I. Gutman and K.C. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem., 50 (2004), 83–92.
- [13] I. Gutman and B. Zhou, Laplacian energy of a graph, Linear Algebra Appl., 414 (2006), 29–37.
- [14] W.H. Haemers, Seidel switching and graph energy, MATCH Commun. Math. Comput. Chem., 68 (2012), 653–659.
- [15] S.M. Hosamani and H.S. Ramane, On degree sum energy of a graph, European J. Pure Appl. Math., 9 (2016), 340–345.
- [16] D. Hu, X. Li, X. Liu and S. Zhang, The Laplacian energy and Laplacian Estrada index of random multipartite graphs, J. Math. Anal. Appl., 443 (2016), 675–687.
- [17] X. Li, Y. Shi and I. Gutman, Graph Energy, Springer, New York, (2012).
- [18] B.J. McClelland, Properties of the latent roots of a matrix: the estimation of π -electron energies, J. Chem. Phys., 54 (1971), 640–643.
- [19] P. Nageswari and P.B. Sarasija, Seidel energy and its bounds, Int. J. Math. Analysis, 8 (2014), 2869–2871.
- [20] M.R. Oboudi, Energy and Seidel energy of graphs, MATCH Commun. Math. Comput. Chem., 75 (2016), 291–303.
- [21] N. Ozeki, On the estimation of inequalities by maximum and minimum values, J. College Arts Sci. Chiba Univ., 5 (1968), 199–203 (in Japanese).
- [22] G. Pólya and G. Szegő, Problems and Theorems in Analysis, Springer, Berlin, (1972).
- [23] H.S. Ramane, M.M. Gundloor and S.M. Hosamani, Seidel equienergetic graphs, Bull. Math. Sci. Appl., 16 (2016), 62–69.
- [24] H.S. Ramane, I. Gutman and M.M. Gundloor, Seidel energy of iterated line graphs of regular graphs, Kragujevac J. Math., 39 (2015), 7–12.