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Abstract

The Seidel matrix of the graph G of order n and of size m is defined as S(G) =
(sij), where s;; = —1 if the vertices v; and v; are adjacent, s;; = 1 if the vertices
v; and v; are not adjacent, and s;; = 0 if i = j. Let Dg(G) = diag(n —1—2dy,n —
1 —2dy,...,n —1—2d,) be a diagonal matrix in which d; is the degree of the
vertex v;. The Seidel Laplacian matrix of G is defined as S1.(G) = Dg(G) — S(G).
ol

If ol ok, ... ok are the eigenvalues of S1,(G), then the Seidel Laplacian energy of

n
Gis Y |oF - M‘ We establish the main properties of the eigenvalues of
i=1

S1(G) and of Seidel Laplacian energy.
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1 Introduction

Let G be a simple, undirected graph with n vertices and m edges. Let vy, v, ..., v, be
the vertices of G. The degree of a vertex v; is the number of edges incident to it and is
denoted by d;. If d; = r for all ¢ = 1,2,...,n, then G is said to be an r-regular graph.

The adjacency matriz of a graph G is the square matrix A(G) = [a;;], in which a;; =1

* Corresponding Author: H.S. Ramane
U Received on August 11, 2017 / Revised on October 20, 2017 / Accepted on October 20, 2017



Seidel Laplacian Energy of Graphs 75

if v; is adjacent to v; and a;; = 0 otherwise. If A\;, Ao, ..., A, are the eigenvalues of A(G)

then the ordinary energy of a graph G is defined as [11]
EG) =Y |\l (1)
i=1

More results on the ordinary graph energy can be found in the book [17].

Let D(G) = diag(dy,ds, .. .,d,) be the diagonal matrix of vertex degrees. The Lapla-
cian matrix of G is defined as L(G) = D(G)— A(G). Let pq, pa, . . ., i, be its eigenvalues.
Then the Laplacian energy of G is defined as [13]

n 2m

Mz'—? : (2)

i=1

The Seidel matriz of a graph G is the n x n real symmetric matrix S(G) = (s;5),
where s;; = —1 if the vertices v; and v; are adjacent, s;; = 1 if the vertices v; and v;
are not adjacent, and s;; = 0 if ¢ = j. The eigenvalues of the Seidel matrix, labeled as
01> 09 > - > 0y, are said to be the Seidel eigenvalues of G' and their collection is the
Seidel spectrum of G [3]. In parallel with Eq. (1), the Seidel energy of the graph G is
defined as [14]

SE = SE(G) = ; o] (3)

Recent results on Seidel energy are reported in [10, 19, 20, 23, 24]. Tt is easy to see that
S(G) = A(G) — A(G), where G is the complement of the graph G.

Motivated by the numerous results obtained in the theory of Laplacian energy (see the
recent papers [4-7, 16] and the references cited therein), we now put forward the concept
of Seidel Laplacian matrix and then examine the Seidel Laplacian energy.

Let Dg(G) = diag(n—1—2dy;,n—1—2ds,...,n—1—2d,). Then the Seidel Laplacian

matriz of G is defined as
Si(G) = Ds(G) — S(G)

Note that Dg(G) = D(G) — D(G) and S(G) = L(G) — L(G).

Let o, ok, ... ok, be the eigenvalues of S;(G). In analogy to Eq. (2), we define the
1,02

Y n?

Seidel Laplacian energy of G as SLE = SLE(G) = i ‘O’Z-L - M‘ :
i=1

n
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If we denote

¢ = ok — for i=1,2,...,n, (4)

then,

SLE(G) = 2: &1 (5)

2 Seidel Laplacian eigenvalues
It is well known that the adjacency and Laplacian eigenvalues satisfies the relations

n n

> XN=0 and Z)\?:2m,

i=1 i=1

n

> i =2m and ol =2m+ Z(G),

i=1 i=1
where Z;(G) = 31", d? is the so-called first Zagreb index, whose mathematical properties

have been studied in due detail (see [2,12]).

Lemma 2.1. Let G be a graph with n vertices and m edges. Then the eigenvalues
ol i=1,2,...,n, of the Seidel Laplacian matrix satisfy the relations

> ol =n(n—1)—4m and Y (o) =n*(n—1)—8m(n— 1) +4Z(G).

i=1 =1

znjaf = trace[SL(G)] = En:(n —1—-2d;) =n(n—1)—4m.

=1 i=1

n n

Y (o}) = trace[SL(G)*] =) { n—1-—2d)*+ (n— 1)]

=1 =1

= n*(n—1)—=8m(n—1)+47,(G).

Lemma 2.2. Let & be as defined above by Eq. (4). Then

znjfz =0 and Zﬁf =M
i=1 ;
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where
M =n(n—-1)+4Z,(G) — 16;:12

Proof:
Yo o=y (af— ”(”_;)_4””‘) = 3ok — [a(n 1) — 4]
i=1 i=1 i=1

i=1 =1 n
n n n 2
— S (o) =2 (n(n— 1) — 4m> Sk 43 (n(n -1) —4m)
i=1 n i=1 i=1 n
—-1)—-4
— n2(n—1) —8m(n—1) +42,(G) — 2 (”(" n) m) [n(n — 1) — 4m]
—1) —4m)?
By (S i
n
[ |
Proposition 2.3. If oL i =1,2,...,n, are the Seidel Laplacian eigenvalues of G, then
—ol i=1,2,... n, are the Seidel Laplacian eigenvalues of G.
Proof: S.(G) = L(G) — L(G) = —SL(G). n
Theorem 2.4. If 01,09,...,0, are the Seidel eigenvalues of an r-regular graph G, then
the Seidel Laplacian eigenvalues of G are n — 1 —2r —o;, i =1,2,... n.

Proof: If GG is an r-regular graph then
SL(G)=(n—1-=2r)1—-5(G)

where [ is an identity matrix. [ |
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Lemma 2.5.

1
Y& =5M.
i<j ’ 2
Proof: Since } ' & =0, we get 37" 53 = =230 &;- |

3 Seidel Laplacian energy
Results of this section are proved using the standard techniques from the theory of graph

energy [8,11,13,15,18].

Theorem 3.1. Let G be a graph with n vertices and m edges. Then
SLE(G) < \/n [n(n— 1) +424(@) — 1o22]

Proof: The Cauchy—Schwarz inequality states that,

(5] = (54) ()

Let a; =1 and b; = |&],i=1,2,...,n. Then

n 2 n
(Sl) <ndler —an
i=1 i=1
implying

16m?
n

SLE(G)*<n [n(n - 1)+42,(G) —

Theorem 3.2. Let GG be a graph with n vertices and m edges. Then
SLE(G) > V2M .
Proof: From Eq. (5) it follows

SLE(G)* = ) _l&I* +2)_l&llg]
i=1

i<j
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=M+M=2M.

&

1<j

> Z|§z‘|2+2
=1

We now state four analytical inequalities that shall be needed in the subsequent con-

siderations.

Lemma 3.3. [21] Suppose that a; and b;, 1 < i < n, are positive real numbers. Then

2 2
n " 1 My M. miym n
a2 b2<< ! 2+ ! 2) < (lzbz>
20 2= Vomem, T 00R) X

where M, = lrgfgl(ai), M, = fglzag)%(bi), m; = 1I£i1§nn(ai)7 and my = 1rélllgnn(bl)

Lemma 3.4. [22] Let a; and b;, 1 < i < n, be non-negative real numbers. Then
n n n 2 TL2
ZCL?Zbg-( azbl> §Z(M1M2—m1m2)2
=1 =1 i—1

where M; and m;, i = 1,2, are same as in Lemma 3.3.

Lemma 3.5. [9] Suppose that a; and b;, 1 < i < n, are positive real numbers. Then

< a(n)(A—a)(B-0)

n n n
=1 =1 =1

where a,b, A and B are real constants, such that for each i, 1 < i < n, the conditions
a<a; <Aandb<b <B are satisfied. Further, a(n) =n {%J (1 — % {%J)

Lemma 3.6. [1] Let a; and b;, 1 < i < n, be non-negative real numbers. Then
S +rRY af < (r+R) (Zaib,)
i=1 i=1 i=1

where r and R are real constants, such that for each 7, 1 < ¢ < n, the conditions
ra; < b; < Ra,; are satisfied.

Theorem 3.7. Let GG be a graph with n vertices and m edges. Let & be defined as in
Eq. (4). Let &nin = glzlgnn €| and &par = lrgag)% &|. Then

2

SLE(G) > \/nM -

4 (gmax - gmzn)Q . (6)
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Proof: Apply Lemma 3.4 for a; = 1 and b; = |¢;|. This leads to
n n n 2
> 3lef - (Slel)
i=1 =1 i=1

nM — SLE(G)* <

IN

(émaa: - gmm)2

INERFNES

(émaz - fmzn)2

and inequality (6) follows. [

Theorem 3.8. Let GG be a graph with n vertices and m edges and let &,,;, and &, be

same as in Theorem 3.7. Then

SLE(G) > 4V nM\/ gmaxgmin ‘

N gmax + gmin

(7)
Proof: Using Lemma 3.3 and setting a; = |§| and b; = 1, implies that

= = 1 min mazx
e < L((f o) (i)

i=1 i=1 fmaz =1
1 (gmax + szn) ) 2
nM < - |——F"-|SLE(G
4 ( gmaa: gmzn ( )
and inequality (7) follows. |

Theorem 3.9. Let G, &,in, and &4, be same as in the Theorem 3.7, and a(n) same as

in Lemma 3.5. Then

SLE(G) > \/nM — a(n) (€nas — Emin)* - (8)

Proof: Using Lemma 3.5 and setting a; = |&;| = b;, @ = &nin = b and A = &0 = B
implies that

DTS (im)Q

i=1

S a(n) <§max - fmzn)z

nM — SLE(G)? < a(n) (Emas — Emin)”

and inequality (8) follows. [

Since a(n) < -, according to Theorem 3.9 we have:

n?
47

Corollary 3.10. SLE(G) > \/nM — ™ (€mas — Emin)” -
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Theorem 3.11. Let G, &, and &, be same as in the Theorem 3.7 Then

> M +n gmax gmzn

SLE(G) - (gmax + Smm) (9)

Proof: Apply Lemma 3.6 and set b; = |&;|, a; = 1, 7 = &in and R = &40, which implies
Z |€Z|2 +€max gmmzl S (gmaz +§mm)z |€z|
i=1 i=1 i=1

M +n fmax fmm < (gmax + gmm) SLE(G)

and inequality (9) follows. [
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