Some New Sum Divisor Cordial Graphs

D.G. Adalja

Marwadi Education Foundation, Rajkot, Gujarat, India. divya.adalja@marwadieducation.edu.in

G.V. Ghodasara H. & H. B. Kotak Institute of Science, Rajkot, Gujarat, India. gaurang.enjoy@gmail.com

Abstract

In this paper we investigate that cycle, cycle with one chord, cycle with twin chord, cycle with triangle, wheel, helm, web, shell, flower, double fan, admit sum divisor cordial labeling.

Key words: Divisor cordial labeling, Sum divisor cordial labeling.

2010 Mathematics Subject Classification : 05C78.

1 Introduction

By a graph, we mean simple, finite, connected and undirected graph. For standard terminology and notations related to graph theory we refer to Gross and Yellen[3], while for number theory we refer to Burton[1].

Definition 1.1 (Varatharajan et al.[6]). Let G = (V, E) be a graph and $f : V(G) \rightarrow \{1, 2, \ldots, |V(G)|\}$ be a bijection. Consider the induced edge function $f^* : E(G) \rightarrow \{0, 1\}$ defined as

$$f^*(uv) = \begin{cases} 1; & \text{if } f(u) \mid f(v) \text{ or } f(v) \mid f(u) \\ 0; & \text{otherwise} \end{cases}$$

The function f is called a divisor cordial labeling if $|e_f(0) - e_f(1)| \leq 1$. A graph which admits a divisor cordial labeling is called a divisor cordial graph.

^{*} Corresponding Author: D.G. Adalja

 $[\]Psi$ Received on November 23, 2017 / Revised on February 06, 2018 / Accepted on February 07, 2018

Definition 1.2 (A. Lourdusamy and F. Patrick [4]). Let G = (V, E) be a graph and $f : V(G) \rightarrow \{1, 2, 3, \ldots, |V(G)|\}$ be a bijection. Consider the induced function $f^* : E(G) \rightarrow \{0, 1\}$ defined as

$$f^*(uv) = \begin{cases} 1; & \text{if } 2 \mid (f(u) + f(v)) \\ 0; & \text{otherwise} \end{cases}$$

The function f is called a sum divisor cordial labeling if $|e_f(0) - e_f(1)| \le 1$.

A graph which admits a sum divisor cordial labeling is called a sum divisor cordial graph.

2 Sum Divisor Cordial Graphs

Theorem 2.1. Cycle C_n $(n \in \mathbb{N}, n \geq 3)$ is sum divisor cordial graph, except for $n \equiv 2 \pmod{4}$.

Proof: Let $V(C_n) = \{v_1, v_2, \dots, v_n\}, |V(C_n)| = n \text{ and } |E(C_n)| = n.$ We define vertex labeling function $f: V(G) \to \{1, 2, 3, \dots, n\}$ as follows. Case 1: For $n \equiv 0, 1, 3 \pmod{4}$. For $1 \leq i \leq n$:

$$f(v_i) = \begin{cases} i & ; i \equiv 0, 1 \pmod{4} \\ i+1 & ; i \equiv 2 \pmod{4} \\ i-1 & ; i \equiv 3 \pmod{4} \end{cases}$$

Case 2: For $n \equiv 2 \pmod{4}$.

then C_n is not sum divisor cordial graph.

In order to satisfy the edge condition for sum divisor cordial graph it is essential to assign label 0 to $\frac{n}{2}$ edges and label 1 to $\frac{n}{2}$ edges out of total *n* edges.

The edge label will give rise at least $\frac{n}{2} + 1$ edges with label 0 and at most $\frac{n}{2} - 1$ edges with label 1 out of total *n* edges.

Therefore $|e_f(1) - e_f(0)| = 2$.

Thus the edge condition for sum divisor cordial graph is violated.

Hence C_n is not sum divisor cordial for $n \equiv 2 \pmod{4}$.

In view of above labeling pattern we have the following.

Cases of n	Edg	e c	onditions	
$n \equiv 0 (mod \ 4)$	$e_f(0)$	=	$e_f(1) = \frac{n}{2}$	
$n \equiv 1 (mod \ 4)$	$e_f(0) =$	$\frac{n}{2}$	$, e_f(1) =$	$\left\lceil \frac{n}{2} \right\rceil$
$n \equiv 3(mod \ 4)$	$e_f(0) =$	$\left\lceil \frac{n}{2} \right\rceil$	$, e_f(1) =$	$\frac{n}{2}$

Clearly it satisfies the condition $|e_f(1) - e_f(0)| \le 1$. Hence C_n is a sum divisor cordial graph.

Example 2.2. Sum divisor cordial labeling of C_5 is shown in *Figure 1*.

Figure 1:

Definition 2.3 (J. A. Gallian [2]). A chord of a cycle C_n $(n \ge 4)$ is an edge joining two non-adjacent vertices.

Theorem 2.4. C_n $(n \in \mathbb{N}, n \ge 4)$ with one chord is a sum divisor cordial graph, where chord forms a triangle with two edges of cycle C_n .

Proof: Let v_1, v_2, \ldots, v_n be the successive vertices of cycle C_n and $e = v_2 v_n$ be the chord of C_n , where the edges $e_1 = v_1 v_2$, $e_2 = v_1 v_n$, $e_3 = v_2 v_n$ form a triangle. |V(G)| = n, |E(G)| = n + 1. We define vertex labeling $f : V(G) \to \{1, 2, 3, \ldots, n\}$ as follows. Case 1: For $n \equiv 0, 1, 2 \pmod{4}$:

$$f(v_i) = \begin{cases} i & ; i \equiv 1, 2 \pmod{4} \\ i+1 & ; i \equiv 3 \pmod{4} \\ i-1 & ; i \equiv 0 \pmod{4}, 1 \le i \le n \end{cases}$$

Case 2: For $n \equiv 3 \pmod{4}$:

$$f(v_i) = \begin{cases} i & ; i \equiv 1, 2 \pmod{4} \\ i+1 & ; i \equiv 3 \pmod{4} \\ i-1 & ; i \equiv 0 \pmod{4}, 1 \le i \le n-2. \end{cases}$$

 $f(v_n) = n - 1, f(v_{n-1}) = n.$

In view of above labeling pattern we have the following.

Cases of n	Edge conditions
$n \equiv 0, 2, 3 (mod \ 4)$	$e_f(1) = \left\lfloor \frac{n+1}{2} \right\rfloor, e_f(0) = \left\lceil \frac{n+1}{2} \right\rceil$
$n \equiv 1 (mod \ 4)$	$e_f(0) = e_f(1) = \frac{n+1}{2}$

Clearly it satisfies the condition $|e_f(1) - e_f(0)| \le 1$.

Hence, C_n with one chord is a sum divisor cordial graph.

Example 2.5. Sum divisor cordial labeling of C_6 with one chord is shown in *Figure 2*.

Figure 2:

Definition 2.6 (J. A. Gallian [2]). Two chords of a cycle C_n are said to be **twin chords** if they form a triangle with an edge of C_n .

For positive integers n and p with $5 \le p+2 \le n$, $C_{n,p}$ denotes cycle C_n with twin chords where chords form cycles C_p, C_3 and C_{n+1-p} without chords with the edges of C_n .

Theorem 2.7. Cycle with twin chords $C_{n,3}$ $(n \in \mathbb{N}, n \geq 5)$ is a sum divisor cordial graph, where chords forms two triangles and one cycle C_{n-2} .

Proof: Let v_1, v_2, \ldots, v_n be the successive vertices of cycle C_n and let $e_1 = v_2 v_n$ and $e_2 = v_3 v_n$ be the chords of C_n . $|V(C_{n,3})| = n$, $|E(C_{n,3})| = n + 2$. We define vertex labeling $f: V(C_{n,3}) \to \{1, 2, 3, \ldots, n\}$ as follows.

Case 1: $n \equiv 0 \pmod{4}$.

For $1 \le i \le n$:

$$f(v_i) = \begin{cases} i & ; i \equiv 1, 0 \pmod{4}.\\ i+1 & ; i \equiv 2 \pmod{4}.\\ i-1 & ; i \equiv 3 \pmod{4}. \end{cases}$$

Case 2: $n \equiv 1, 2 \pmod{4}$. For $1 \leq i \leq n$:

$$f(v_i) = \begin{cases} i & ; i \equiv 1, 2 \pmod{4}.\\ i+1 & ; i \equiv 3 \pmod{4}.\\ i-1 & ; i \equiv 0 \pmod{4}. \end{cases}$$

Case 3: $n \equiv 3 \pmod{4}$ For $1 \le i \le n-2$:

$$f(v_i) = \begin{cases} i & ; i \equiv 1, 2 \pmod{4}.\\ i+1 & ; i \equiv 3 \pmod{4}.\\ i-1 & ; i \equiv 0 \pmod{4}. \end{cases}$$

 $f(v_n) = n - 1, f(v_{n-1}) = n.$

In view of above labeling pattern we have the following.

Cases of n	Edge conditions
$n \equiv 0, 2(mod \ 4)$	$e_f(0) = \frac{n+2}{2} = e_f(1)$
$n \equiv 1 (mod \ 4)$	$e_f(0) = \left\lfloor \frac{n+2}{2} \right\rfloor, e_f(1) = \left\lceil \frac{n+2}{2} \right\rceil$
$n \equiv 3(mod \ 4)$	$e_f(1) = \left\lfloor \frac{n+2}{2} \right\rfloor, e_f(0) = \left\lceil \frac{n+2}{2} \right\rceil$

Clearly, it satisfies the conditions $|e_f(1) - e_f(0)| \le 1$. Hence, $C_{n,3}$ is a sum divisor cordial graph.

Example 2.8. Sum divisor cordial labeling of $C_{7,3}$ is shown in *Figure 3*.

Figure 3:

Definition 2.9 (J. A. Gallian [2]). A cycle with triangle is a cycle with three chords which by themselves form a triangle.

For positive integers p, q, r and $n \ge 6$ with p + q + r + 3 = n, $C_n(p, q, r)$ denotes a cycle with triangle whose edges form the edges of cycles C_{p+2} , C_{q+2} , C_{r+2} without chords.

Theorem 2.10. $C_n(1, 1, n-5)$ is a sum divisor cordial graph, except for $n \equiv 3 \pmod{4}$.

Proof: Let v_1, v_2, \ldots, v_n be the successive vertices of cycle C_n and $e_1 = v_1v_3$, $e_2 = v_3v_{n-1}$, $e_3 = v_1v_{n-1}$ be the chords of C_n . $|V(C_n(1, 1, n-5))| = n$, $|E(C_n(1, 1, n-5))| = n + 3$. We define vertex labeling $f : V(G) \rightarrow \{1, 2, 3, \ldots, n\}$ as follows. Case 1: $n \equiv 0, 1 \pmod{4}$. For $1 \leq i \leq n$:

$$f(v_i) = \begin{cases} i & ; i \equiv 1, 2 \pmod{4} \\ i+1 & ; i \equiv 3 \pmod{4} \\ i-1 & ; i \equiv 0 \pmod{4} \end{cases}$$

Case 2: $n \equiv 2 \pmod{4}$. For $1 \leq i \leq n-2$:

$$f(v_i) = \begin{cases} i & ; i \equiv 1, 0 \pmod{4} \\ i+1 & ; i \equiv 2 \pmod{4} \\ i-1 & ; i \equiv 3 \pmod{4}. \end{cases}$$

$$f(v_n) = n - 1, f(v_{n-1}) = n.$$

Case 3: $n \equiv 3 \pmod{4}$

then cycle with triangle $C_n(1, 1, n-5)$ is not sum divisor cordial graph.

In order to satisfy the edge condition for sum divisor cordial graph it is essential to assign label 0 to $\frac{n+3}{2}$ edges and label 1 to $\frac{n+3}{2}$ edges out of total n + 3 edges.

The edge label will give rise at least $\frac{n+3}{2} + 1$ edges with label 0 and at most $\frac{n+3}{2} - 1$ edges with label 1 out of total n + 3 edges.

Therefore $|e_f(1) - e_f(0)| = 2$.

Thus the edge condition for sum divisor cordial graph is violated.

Hence cycle with triangle $C_n(1, 1, n-5)$ is not sum divisor cordial for $n \equiv 3 \pmod{4}$. In view of above labeling pattern we have the following.

Cases of n	Edge conditions		
$n \equiv 1 (mod \ 4)$	$e_f(0) = \frac{n+3}{2} = e_f(1)$		
$n \equiv 0 (mod \ 4)$	$e_f(1) = \left\lfloor \frac{n+3}{2} \right\rfloor, e_f(0) = \left\lceil \frac{n+3}{2} \right\rceil$		
$n \equiv 2(mod \ 4)$	$e_f(0) = \left\lfloor \frac{n+3}{2} \right\rfloor, e_f(1) = \left\lceil \frac{n+3}{2} \right\rceil$		

Clearly it satisfies the conditions $|e_f(1) - e_f(0)| \le 1$.

Hence, $C_n(1, 1, n-5)$ is a sum divisor cordial graph.

Example 2.11. Sum divisor cordial labeling of cycle $C_n(1, 1, 3)$ with triangle is shown in *Figure 4*.

Figure 4:

Definition 2.12 (J. Gross and J. Yellen [3]). The wheel graph $W_n (n \in \mathbb{N}, n \ge 3)$ is the join of C_n and K_1 i.e. $W_n = C_n + K_1$. Here the edges (vertices) of C_n are called rim edges (rim vertices) and the vertex corresponding to K_1 is called apex.

Theorem 2.13. W_n is a sum divisor cordial graph except for $n \equiv 3 \pmod{4}$.

Proof: Let v_1, v_2, \ldots, v_n be the rim vertices and v_0 be the apex vertex of W_n . $|V(W_n)| = n + 1, |E(W_n)| = 2n.$ We define vertex labeling $f: V(W_n) \to \{1, 2, 3 \ldots, n+1\}$ as follows. Case 1: $n \equiv 1 \pmod{4}.$

 $f(v_0) = 1.$

For $1 \leq i \leq n$:

$$f(v_i) = \begin{cases} i & ; i \equiv 3(mod \ 4) \\ i+1 & ; i \equiv 1, 0(mod \ 4) \\ i+2 & ; i \equiv 2(mod \ 4) \end{cases}$$

Case 2: $n \equiv 0 \pmod{4}$

 $f(v_0) = 1.$

For $1 \leq i \leq n$:

$$f(v_i) = \begin{cases} i & ; i \equiv 3(mod \ 4) \\ i+1 & ; i \equiv 1, 0(mod \ 4) \\ i+2 & ; i \equiv 2(mod \ 4) \end{cases}$$

Case 3: $n \equiv 2 \pmod{4}$

$$f(v_0) = 2.$$

For $1 \leq i \leq n$:

$$f(v_i) = \begin{cases} i & ; i \equiv 1 \pmod{4} \\ i+1 & ; i \equiv 2, 3 \pmod{4} \\ i+2 & ; i \equiv 0 \pmod{4} \end{cases}$$

Case 4: $n \equiv 3 \pmod{4}$

then W_n is not sum divisor cordial graph.

In order to satisfy the edge condition for sum divisor cordial graph it is essential to assign label 0 to n edges and label 1 to n edges out of total 2n edges.

The edge label will give rise at least n + 1 edges with label 0 and at most n - 1 edges with label 1 out of total 2n edges.

Therefor $|e_f(1) - e_f(0)| = 2$. Thus the edge condition for sum divisor cordial graph is violated.

Hence W_n is not sum divisor cordial, for $n \equiv 3 \pmod{4}$.

In view of above labeling pattern we have the following.

Cases of n	Edge conditions
$n \equiv 0, 1, 2 (mod \ 4)$	$e_f(0) = n = e_f(1)$

Clearly, it satisfies the conditions $|e_f(1) - e_f(0)| \le 1$. Hence, W_n is a sum divisor cordial graph.

Example 2.14. Sum divisor cordial labeling of W_5 is shown in *Figure 5*.

Figure 5:

Definition 2.15 (J. Gross and J. Yellen [3]). The helm $H_n (n \in \mathbb{N}, n \geq 3)$ is the graph obtained from a wheel W_n by attaching a pendant edge at each rim vertex of W_n .

Theorem 2.16. Helm H_n is a sum divisor cordial graph.

Proof: Let v_0 be the apex vertex, v_1, v_2, \ldots, v_n be the vertices of degree 4 and u_1, u_2, \ldots, u_n be the pendant vertices of H_n .

 $|V(H_n)| = 2n + 1, |E(H_n)| = 3n.$ We define vertex labeling $f: V(H_n) \to \{1, 2, 3, \dots, 2n + 1\}$ as follows.

$$f(v_0) = 1.$$

To label the remaining vertices, consider the following cases. Case 1: $n \equiv 0, 2 \pmod{4}$

$$f(v_{2i-1}) = 4i - 1; 1 \le i \le \frac{n}{2}.$$

$$f(v_{2i}) = 4i - 2; 1 \le i \le \frac{n}{2}.$$

$$f(u_i) = f(v_i) + 2; 1 \le i \le n$$

Case 2: $n \equiv 1, 3 \pmod{4}$

$$f(v_{2i-1}) = 4i - 1; 1 \le i \le \frac{n-1}{2}.$$

$$f(v_{2i}) = 4i - 2; 1 \le i \le \frac{n-1}{2}.$$

$$f(u_i) = f(v_i) + 2; 1 \le i \le n - 1.$$

 $f(v_n) = 2n + 1.$
 $f(u_n) = 2n.$

In view of the above labeling pattern, we have the following.

Cases of n	Edge conditions
$n \equiv 1, 3 (mod \ 4)$	$e_f(0) = \left\lfloor \frac{3n}{2} \right\rfloor, e_f(1) = \left\lceil \frac{3n}{2} \right\rceil$
$n \equiv 0, 2(mod \ 4)$	$e_f(0) = \frac{3n}{2} = e_f(1)$

Clearly, it satisfies the conditions $|e_f(1) - e_f(0)| \le 1$. Hence H_n is a sum divisor cordial graph.

Example 2.17. Sum divisor cordial labeling of the graph H_6 is shown in *Figure 6*.

Figure 6:

Definition 2.18 (J. A. Gallian [2]). Web graph $Wb_n (n \in \mathbb{N}, n \geq 3)$ is obtained by joining the pendant vertices of a helm H_n to form a cycle and then adding a pendant edge to each vertex of outer cycle.

Theorem 2.19. The Web graph Wb_n is a sum cordial graph.

Proof: Let u_0 be an apex vertex, u_1, u_2, \ldots, u_n denote the vertices of inner cycle, v_1, v_2, \ldots, v_n denote the vertices of outer cycle and w_1, w_2, \ldots, w_n denote the pendant vertices of Wb_n . $|V(Wb_n)| = 3n + 1, |E(Wb_n)| = 5n.$ We define vertex labeling $f: V(Wb_n) \to \{1, 2, 3, \ldots, 3n + 1\}$ as follows.

$$f(u_0) = 1.$$

 $f(u_i) = 2i; 1 \le i \le n.$

$$f(v_i) = 2i + 1; 1 \le i \le n.$$

$$f(w_i) = (2n + 1) + i; 1 \le i \le n.$$

In view of the above labeling pattern, we have the following.

Cases of n	Edge conditions
$n \equiv 0, 2 (mod \ 4)$	$e_f(0) = \frac{5n}{2} = e_f(1)$
$n \equiv 1, 3 (mod \ 4)$	$e_f(1) = \left\lfloor \frac{5n}{2} \right\rfloor, e_f(0) = \left\lceil \frac{5n}{2} \right\rceil$

Clearly it satisfies the conditions $|e_f(1) - e_f(0)| \le 1$.

Hence, Wb_n is a sum divisor cordial graph.

Example 2.20. Sum divisor cordial labeling of Wb_5 is shown in *Figure 7*.

Figure 7:

Definition 2.21 (J. A. Gallian [2]). The shell $S_n (n \ge 4, n \in \mathbb{N})$ is the graph obtained by taking n - 3 concurrent chords in a cycle C_n . The vertex at which all the chords are concurrent is called the apex vertex of S_n .

Theorem 2.22. S_n is a sum divisor cordial graph.

Proof: Let v_1, v_2, \ldots, v_n be the vertices of S_n , where v_1 is the apex vertex. |V(G)| = n, |E(G| = 2n - 3.We define vertex labeling $f: V(S_n) \to \{1, 2, 3, \ldots, n\}$ as follows. Case 1: For $n \equiv 1, 3 \pmod{4}$, If $1 \le i \le n - 1$:

$$f(v_i) = \begin{cases} i & ; i \equiv 1, 2 \pmod{4} \\ i+1 & ; i \equiv 3 \pmod{4} \\ i-1 & ; i \equiv 4 \pmod{4} \end{cases}$$

 $f(v_n) = n$

Case 2: For $n \equiv 2, 0 \pmod{4}$, If $1 \le i \le n$:

$$f(v_i) = \begin{cases} i & ; i \equiv 1, 2 \pmod{4} \\ i+1 & ; i \equiv 3 \pmod{4} \\ i-1 & ; i \equiv 4 \pmod{4} \end{cases}$$

In view of the above labeling pattern, we have

Cases of n	E	dge c	onditions	
$n \equiv 0, 2, 3 (mod \ 4)$	$e_f(1) =$	$\frac{2n-3}{2}$	$, e_f(0) =$	$\left\lceil \frac{2n-3}{2} \right\rceil$
$n \equiv 1 (mod \ 4)$	$e_f(1) =$	$\frac{2n-3}{2}$	$, e_f(0) =$	$\left\lfloor \frac{2n-3}{2} \right\rfloor$

Clearly it satisfies the conditions $|e_f(1) - e_f(0)| \le 1$. Hence, S_n is a sum divisor cordial graph.

Example 2.23. Sum divisor cordial labeling of S_7 is shown in *Figure 8*.

Figure 8:

Definition 2.24 (J. A. Gallian [2]). The flower graph $fl_n (n \ge 4, n \in \mathbb{N})$ is obtained from helm H_n by joining each pendant vertex to the central vertex of H_n .

Theorem 2.25. fl_n is a sum divisor cordial graph.

Proof: Let v_0 be the apex vertex, v_1, v_2, \ldots, v_n be the vertices of degree 4 and u_1, u_2, \ldots, u_n be the vertices of degree 2 in fl_n .

30

 $|V(fl_n)| = 2n + 1, |E(fl_n)| = 4n.$ We define vertex labeling $f: V(fl_n) \to \{1, 2, 3, \dots, 2n + 1\}$ as follows.

 $f(v_0) = 1.$ $f(v_i) = 2i; 1 \le i \le n.$ $f(u_i) = 2i + 1; 1 \le i \le n.$

In view of the above labeling pattern, we have

Cases of n	Edge conditions
$n\equiv 0,1,2,3(mod~4)$	$e_f(0) = 2n = e_f(1)$

Clearly it satisfies the conditions $|e_f(1) - e_f(0)| \le 1$. Hence, fl_n is a sum divisor cordial graph.

Example 2.26. Sum divisor cordial labeling of fl_4 is shown in *Figure 9*.

Figure 9:

Definition 2.27 (J. A. Gallian [2]). The double fan Df_n $(n \ge 2, n \in \mathbb{N})$ is the graph $P_n + 2K_1$.

Theorem 2.28. DF_n is a sum divisor cordial graph.

Proof: Let u, v be the apex vertices of degree n and v_1, v_2, \ldots, v_n are vertices on path. $|V(DF_n)| = n + 2, |E(DF_n)| = 3n - 1.$ We define vertex labeling $f: V(DF_n) \to \{1, 2, 3, \ldots, n + 2\}$ as follows.

f(u) = 1.f(v) = 2. Case 1: For $n \equiv 0, 1, 3 \pmod{4}$, If $1 \le i \le n$: $f(v_i) = \begin{cases} i+1; & i \equiv 3 \pmod{4} \\ i+2; & i \equiv 1, 0 \pmod{4} \\ i+3; & i \equiv 2 \pmod{4} \end{cases}$ Case 1: For $n \equiv 2 \pmod{4}$, If $1 \le i \le n-1$: $f(v_i) = \begin{cases} i+1; & i \equiv 3 \pmod{4} \\ i+2; & i \equiv 1, 0 \pmod{4} \\ i+3; & i \equiv 2 \pmod{4} \end{cases}$

In view of the above labeling pattern, we have the following.

Cases of n	Edge conditions
$n \equiv 1, 3(mod \ 4)$	$e_f(0) = \frac{3n-1}{2} = e_f(1)$
$n \equiv 0, 2 (mod \ 4)$	$e_f(1) = \left\lfloor \frac{3n-1}{2} \right\rfloor, e_f(0) = \left\lceil \frac{3n-1}{2} \right\rceil$

Clearly it satisfies the conditions $|e_f(1) - e_f(0)| \le 1$. Hence, DF_n is a sum divisor cordial graph.

Example 2.29. Sum divisor cordial labeling of DF_5 is shown in *Figure 10*.

Figure 10:

3 Concluding Remarks

In this paper, we derived the sum divisor cordial labeling of cycle C_n , C_n with one chord, C_n with twin chords, C_n with triangle, W_n , H_n , fl_n , Wb_n , S_n , DF_n . To investigate analogous results for different graphs and graphs using graph operations is an open area of research. It is also interesting to find the divisor cordial graphs which are sum divisor cordial and vice versa.

References

- D. M. Burton, Elementary Number Theory, Brown Publishers, Second Edition, (1990).
- [2] J. A. Gallian, A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinatorics, (2016), # DS6.
- [3] J. Gross and J. Yellen, Graph Theory and its applications, CRC Press, (1999).
- [4] A. Lourdusamy, F. Patrick and J. Shiama, Sum divisor cordial graphs, Proyecciones Journal of Mathematics, 35(1) (2016), 119-136.
- [5] A. Lourdusamy, F. Patrick, Sum divisor cordial labeling for star and ladder related graphs, Proyectiones Journal of Mathematics, 35(4) (2016), 437-455.
- [6] R. Varatharajan, S. Navanaeethakrishnan and K. Nagarajan, Divisor Cordial Graphs, International J. Math. Combin., 4 (2011) 15-25.
- [7] G. V. Ghodasara, D. G. Adalja, Divisor Cordial Labeling In Context Of Ring Sum Of Graphs, International J. of Math. and Soft Computing, 4(1), (2017), 23 - 31.
- [8] G. V. Ghodasara, D. G. Adalja, Vertex Odd Divisor Cordial Labeling for Vertex Switching of Special Graphs, Global Journal of Pure and Applied Mathematics, 13(9), (2017), 5525 - 5538.