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Abstract

Let G = (V, E) be a simple connected graph of order n ≥ 4. An ordered subset
W of V is said to be a resolving set of G if every vertex is uniquely determined by
its vector of distances to the vertices in W. The minimum cardinality of a resolving
set is called the resolving number of G and is denoted by r(G). As an extension, the
total resolving number was introduced in [5] as the minimum cardinality taken over
all resolving sets in which 〈W 〉 has no isolates and it is denoted by tr(G). In this
paper, we characterize 1-connected graphs for which tr(G) = n − 2 and bipartite
graphs for which tr(G) = 2.
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1 Introduction
Let G = (V,E) be a finite, simple, connected and undirected graph. The degree of a

vertex v in a graph G is the number of edges incident to v and it is denoted by d(v).
The maximum degree in a graph G is denoted by ∆(G) and the minimum degree is
denoted by δ(G). The distance d(u, v) between two vertices u and v in G is the length of
a shortest u-v path in G. The maximum value of distance between vertices of G is called
its diameter. Pn denote the path on n vertices. Cn denote the cycle on n vertices. Kn

denote the complete graph on n vertices. A graph is acyclic if it has no cycles. A tree
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is a connected acyclic graph. A complete bipartite graph is denoted by Ks,t. A star is
denoted by K1,n−1. A tree obtained by joining the centres of two stars K1,s and K1,t by
an edge is called a bistar and it is denoted by Bs,t. The join G + H consists of G ∪ H
and all edges joining a vertex of G and a vertex of H.

For a cut vertex v of a connected graph G, suppose that the
disconnected graph G \ {v} has k components G1, G2, . . . , Gk (k ≥ 2). The induced
subgraphs Bi = G[V (Gi) ∪ {v}] are connected and referred to as the brances of G at
v. To identify non adjacent vertices x and y of a graph G is to replace these vertices
by a single vertex which is incident to all the edges which were incident in G to either
x or y. For any two integers x and y, x ∼ y denotes the difference between x and y.

For l ≥ 1, Nl(W ) = {v ∈ V \ W / d(v,W ) = l}. A vertex of degree at least 3 in a
graph G is called a major vertex of G. Any end vertex u of G is said to be a terminal
vertex of a major vertex v of G if d(u, v) < d(u,w) for every other major vertex w of
G. The terminal degree ter(v) of a major vertex v is the number of terminal vertices of
v. A major vertex v of G is an exterior major vertex of G if it has positive terminal degree.

If W = {w1, w2, ..., wk} ⊆ V (G) is an ordered set, then the ordered k-tuple
(d(v, w1), d(v, w2), ..., d(v, wk)) is called the representation of v with respect to W and
it is denoted by r(v|W ). Since the representation for each wi ∈ W contains exactly one
0 in the ith position, all the vertices of W have distinct representations. W is called a
resolving set for G if all the vertices of V \W also have distinct representations. The min-
imum cardinality of a resolving set is called the resolving number of G and it is denoted
by r(G). In [5], we introduced and studied total resolving number. If W is a resolving
set and the induced subgraph 〈W 〉 has no isolates, then W is called a total resolving set
of G. The minimum cardinality taken over all total resolving sets of G is called the total
resolving number of G and is denoted by tr(G).

In this paper, we characterize 1-connected graphs for which tr(G) = n−2 and bipartite
graphs for which tr(G) = 2.

2 Total Resolving Number of Graphs
The total resolving number of some well-known classes of graphs have been determined

in [5]. The following results are used in the next section.

Observation 2.1. [5] Let G be a graph of order n ≥ 3. Then
2 ≤ tr(G) ≤ n− 1.
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Theorem 2.2. [5] Let G be a graph of order n ≥ 3. Then tr(G) = n − 1 if and only if
G ∼= Kn or K1,n−1.

Remark 2.3. [5] Let W = {w1, w2} be a total resolving set of G and d be the diameter
of G. Then |Nl(W )| ≤ 3, 1 ≤ l ≤ d− 1.

3 Two Characterizations
In this section, we characterize 1-connected graphs for which tr(G) = n − 2 and

bipartite graphs for which tr(G) = 2.

Notation 3.1. If H and K are two graphs, then the graph obtained by identifying one
center of H with one center of K is denoted by H ∗K and the graph obtained by joining
one center of H to one center of K is denoted by H e K.

Theorem 3.2. Let G be a 1-connected graph of order n ≥ 4. Then tr(G) = n− 2 if and
only if G is isomorphic to Bs,t, s ≥ 1, t ≥ 1 or 2K3 + e or K1,s ∗ Kt, s ≥ 1, t ≥ 3 or
K3 ∗Kt, t ≥ 3 or K3 e K1,s, s ≥ 3.

Proof: Let V (G) = {v1, v2, . . . , vn}.
Assume that tr(G) = n− 2. Let W be a total resolving set of G.
Let v1 be a cut vertex of G. Let C1, C2, . . . , Cr, r ≥ 2 be the components of G \ {v1}.

Then there are r branches at v1. Let B1, B2, . . . , Br be such branches. First, we claim
that at most two branches contain a cycle. Suppose not. Let B1, B2, B3 be such branches.
By Observation 2.1, tr(B1) ≤ |B1| − 1, tr(B2) ≤ |B2| − 1 and tr(B3) ≤ |B3| − 1. Then
there exist vi ∈ V (B1), vj ∈ V (B2) and vk ∈ V (B3), i, j, k 6= 1 such that V (B1) \ {vi},
V (B2) \ {vj} and V (B3) \ {vk} are total resolving sets of B1, B2 and B3 respectively.
Clearly, V (G) \ {vi, vj, vk} is a total resolving set of G with cardinality n− 3, which is a
contradiction.

Thus at most two branches contain a cycle. We consider the following three cases.
Case 1 : G is a tree.

First, we claim that G contains one or two exterior major vertices.
Suppose that G contains more than two exterior major vertices. Let vi, vj and vk be
such vertices. Let v′i, v′j and v′k be the terminal vertices of vi, vj and vk respectively. Then
V (G) \ {v′i, v′j, v′k} is a total resolving set of G with cardinality n− 3, which is a contra-
diction. Thus G has one or two exterior major vertices. If G has exactly one exterior
major vertex, then we claim that G ∼= B1,t, t ≥ 3. Clearly, v1 is the exterior major vertex.
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Now, we claim that exactly one branch at v1 is not K2. Suppose at least two branches
are not K2. Let B1 and B2 be such branches. Let vi and vj be the pendant vertices of
B1 and B2 respectively. Let vk be the neighbor of vi. Then clearly, V (G) \ {vi, vj, vk} is
a total resolving set with cardinality n − 3, which is a contradiction. Thus exactly one
branch at v1 is not K2. Let B1 be such a branch. Then we claim that B1 is P3. Suppose
that |B1| = t ≥ 4. Let X = V (B1) \ {v1}. Clearly, V (G) \X is a total resolving set with
cardinality n − (t − 1), which is a contradiction. Hence G ∼= B1,t, t ≥ 3. Similarly, we
can prove if G has exactly two exterior major vertices, then G ∼= Bs,t, s, t ≥ 2.
Case 2 : One branch at v1 contains a cycle.

Let B1 be such a branch and V (B1) = {v1, v2, . . . , vs}. We consider the following two
subcases.
Subcase 2.1 : |V (B1)| = s ≥ 4.

We claim that B1 is complete and others are K2. Suppose B1 is not complete. By
Theorem 2.2, tr(B1) ≤ s− 2. Then there exist v2, v3 ∈ V (B1) such that V (B1) \ {v2, v3}
is a total resolving set of B1. Let vn be a pendant vertex of G in B2. Then clearly,
V (G) \ {v2, v3, vn} is a total resolving set of G with cardinality n− 3, which is a contra-
diction. Therfore B1 is complete. By Theorem 2.2, tr(B1) = n− 1. Then there exists a
vertex vs ∈ V (B1) such that V (B1) \ {vs} is a total resolving set of B1. Next, we claim
that B2, B3, . . . , Br are K2. First, we claim that G contains exactly one exterior major
vertex. If G contains at least two exterior major vertices vj and vk, then let v′j and v′k

be the terminal vertices of vj and vk respectively. Clearly, V (G) \ {vs, v
′
j, v
′
k} is a total

resolving set of G with cardinality n − 3, which is a contradiction. Hence G contains
exactly one exterior major vertex.

Next, we claim that v1 is the exterior major vertex. Suppose not. Clearly, r = 2 and
B2 contains exactly one exterior major vertex. Let vn be the pendant vertex of B2. Then
clearly, V (G) \ {vi, v1, vn} is a total resolving set of G with cardinality n− 3, which is a
contradiction. Hence v1 is the exterior major vertex. Now, we claim that each Bi is K2.

Suppose not. Let B2 be such a branch and vn be a pendant vertex of B2 and vn−1 be
its neighbor. Then clearly, V (G) \ {vs, vn−1, vn} is a total resolving set of G, which is a
contradiction. Thus B1 is complete and others are K2. Hence K1,s ∗Kt, s ≥ 1 and t ≥ 3.
Subcase 2.2 : |V (B1)| = 3.

Then B1 is K3. Let V (B1) = {v1, v2, v3}. First, we claim that G contains exactly one
exterior major vertex. Suppose G contains more than one exterior major vertex. Let vi

and vj be such exterior major vertices and v′i and v′j be the terminal vertices of vi and



Total Resolving Number of Graphs - Some Characterizations 5

vj respectively. Then clearly, V (G) \ {v3, v
′
i, v
′
j} is a total resolving set with cardinality

n− 3, which is a contradiction. Thus G contains exactly one exterior major vertex. If v1

is the exterior major vertex, then we claim Bi is K2 for all 2 ≤ i ≤ r.

Suppose not. Without loss of generality, let |B2| ≥ 3. Let vi be the pendant vertex
of B2 and vj be the neighbor of vi. Then V (G) \ {vi, vj, v3} is a total resolving set with
cardinality n− 3, which is a contradiction. Hence G ∼= K1,s ∗K3. If v1 is not the exterior
major vertex, then clearly, r = 2 and neighbor of v1 in B2 is the exterior major vertex.
Let vi be the exterior major vertex. Then we claim d(vi, x) = 1 for all x ∈ V (B2) \ {vi}.
Suppose that d(vi, y) ≥ 2 for some pendant vertex y ∈ V (B2) \ {vi}. Let x be the neigh-
bor of y. Then V (G) \ {v3, x, y} is a total resolving set with cardinality n− 3, which is a
contradiction. Hence G ∼= K3 e K1,s, s ≥ 3.
Case 3 : Two branches at v1 contain a cycle.

Let B1, B2 be such branches. First we claim that r = 2. Suppose r ≥ 3. Let B3

be a tree branch and vi be a pendant vertex of B3. Then there exist vj ∈ B1 and
vk ∈ B2(j 6= k) such that V (G)\{vi, vj, vk} is a total resolving set with cardinality n−3,
which is a contradiction. Thus r = 2. Now, we claim that one branch is K3 and another
one is either complete or K1 + (K2 ∪ K1). First we claim that either |V (B1)| = 3 or
|V (B2)| = 3. Suppose |V (B1)| ≥ 4 and |V (B2)| ≥ 4. Let v2, v3 be the neighbors of v1 and
v2 ∈ V (B1), v3 ∈ V (B2). Then clearly, V (G) \ {v1, v2, v3} is a total resolving set of G
with cardinality, n−3, which is a contradiction. Thus either |V (B1)| = 3 or |V (B2)| = 3.
Without loss of generality, let |V (B1)| = 3 and hence B1 is K3. Let V (B1) = {v1, v2, v3}
and V (B2) = {v1, v4, v5, . . . , vn}. Then |V (B2)| = n− 2. Next, we claim that B2 is either
complete or K1 + (K2 ∪K1). Suppose B2 is neither complete nor K1 + (K2 ∪K1). Since
B2 is not complete, tr(B2) ≤ n− 4. Let V (B2) \ {vn−1, vn} be a total resolving set of B2.

Clearly, V (G) \ {v2, vn−1, vn} is a total resolving set, which is a contradiction. Thus B2

is either complete or K1 + (K2 ∪K1). Hence K3 ∗Kt, t ≥ 3 or 2K3 + e.

The converse can be easily verified.

Notation 3.3. Let G be the collection of graphs G such that G is the union of two
distinct paths P1 : x1x2 . . . xr, P2 : y1y2 . . . ys, r ≤ s and x1y1 ∈ E(G), xiyi ∈ E(G) for at
least one i, 2 ≤ i ≤ r.

Theorem 3.4. If G is a bipartite graph that is not a path, then tr(G) = 2 if and only
if G ∈ G .

Proof: Let V (G) = {v1, v2, . . . , vn}. Then V (G) = S ∪ T.
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Let tr(G) = 2 and W = {v1, v2} be a total resolving set of G. Let v1 ∈ S. Then v2 ∈ T.
Let d be the diameter ofG and (x, y) be the representation of any vertex. Then x ∼ y ≤ 1.
Since v1 and v2 are in distinct partite sets, d(u, v1) 6= d(u, v2) for all u ∈ V (G) \ {v1, v2}
and hence x ∼ y = 1. By Remark 2.3, |Nl(W )| ≤ 3, for all 1 ≤ l ≤ d−1. But the possible
representations of the vertices of Nl(W ) are (l, l + 1) and (l + 1, l) for all 1 ≤ l ≤ d− 1.
It follows that |Nl(W )| ≤ 2 for all 1 ≤ l ≤ d − 1. Thus the possible representations of
the vertices of V (G) \W are (1, 2), (2, 3), . . . , (d − 1, d) and (2, 1), (3, 2), . . . , (d, d − 1).
Let X = {(1, 2), (2, 3), . . . , (d − 1, d)} and Y = {(2, 1), (3, 2), . . . , (d, d − 1)}. We define
A = {a ∈ V (G) / r(a|W ) ∈ X} and B = {b ∈ V (G) / r(b|W ) ∈ Y }. Therefore 〈A ∪ {v1}〉
and 〈B ∪ {v2}〉 are paths in G. Then we can easily verify that G ∈ G .

The converse can be easily verified.

Open Problem 3.5. If G is a 2-connected graph of order n ≥ 4, then characterize
graphs for which tr(G) = n− 2.

Open Problem 3.6. Characterize non-bipartite graphs for which tr(G) = 2.
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