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Abstract

Let G = (V, E) be a simple connected graph of order n > 4. An ordered subset
W of V is said to be a resolving set of G if every vertex is uniquely determined by
its vector of distances to the vertices in W. The minimum cardinality of a resolving
set is called the resolving number of G and is denoted by r(G). As an extension, the
total resolving number was introduced in [5] as the minimum cardinality taken over
all resolving sets in which (W) has no isolates and it is denoted by tr(G). In this
paper, we characterize 1-connected graphs for which tr(G) = n — 2 and bipartite
graphs for which tr(G) = 2.

Key words: Resolving number, Total resolving number

2010 Mathematics Subject Classification : Primary 05C12, Secondary
05C35

1 Introduction

Let G = (V, E) be a finite, simple, connected and undirected graph. The degree of a
vertex v in a graph G is the number of edges incident to v and it is denoted by d(v).
The maximum degree in a graph G is denoted by A(G) and the minimum degree is
denoted by §(G). The distance d(u,v) between two vertices v and v in G is the length of
a shortest u-v path in GG. The maximum value of distance between vertices of G is called
its diameter. P, denote the path on n vertices. C), denote the cycle on n vertices. K,

denote the complete graph on n vertices. A graph is acyclic if it has no cycles. A tree
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is a connected acyclic graph. A complete bipartite graph is denoted by Ks;. A star is
denoted by K ,_1. A tree obtained by joining the centres of two stars K; s and K;; by
an edge is called a bistar and it is denoted by B, ;. The join G + H consists of G U H
and all edges joining a vertex of G' and a vertex of H.

For a cut vertex v of a connected graph G, suppose that the
disconnected graph G \ {v} has k components Gi,Gs,..., Gy (kK > 2). The induced
subgraphs B; = G[V(G;) U {v}] are connected and referred to as the brances of G at
v. To identify non adjacent vertices x and y of a graph G is to replace these vertices
by a single vertex which is incident to all the edges which were incident in G to either
x or y. For any two integers x and y, © ~ y denotes the difference between x and y.
For I > 1, (W) = {v € V\W / d(v,\W) = 1}. A vertex of degree at least 3 in a
graph G is called a major verter of G. Any end vertex u of G is said to be a terminal
vertez of a major vertex v of G if d(u,v) < d(u,w) for every other major vertex w of
G. The terminal degree ter(v) of a major vertex v is the number of terminal vertices of
v. A major vertex v of G is an exterior major vertex of G if it has positive terminal degree.

If W = {wy,we,..,w} € V(G) is an ordered set, then the ordered k-tuple
(d(v,w1),d(v,wy), ...,d(v,wy)) is called the representation of v with respect to W and
it is denoted by r(v|W). Since the representation for each w; € W contains exactly one
0 in the i** position, all the vertices of W have distinct representations. W is called a
resolving set for G if all the vertices of V'\ W also have distinct representations. The min-
imum cardinality of a resolving set is called the resolving number of G and it is denoted
by r(G). In [5], we introduced and studied total resolving number. If W is a resolving
set and the induced subgraph (W) has no isolates, then W is called a total resolving set
of G. The minimum cardinality taken over all total resolving sets of GG is called the total
resolving number of G and is denoted by tr(G).

In this paper, we characterize 1-connected graphs for which tr(G) = n—2 and bipartite
graphs for which tr(G) = 2.

2 Total Resolving Number of Graphs

The total resolving number of some well-known classes of graphs have been determined

in [5]. The following results are used in the next section.

Observation 2.1. [5] Let G be a graph of order n > 3. Then
2<tr(G)<n-—1
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Theorem 2.2. [5] Let G be a graph of order n > 3. Then tr(G) = n — 1 if and only if
G=K,or Ki,_.

Remark 2.3. [5] Let W = {wy,wy} be a total resolving set of G and d be the diameter
of G. Then |[N;(W)| <3,1<[<d—-1.

3 Two Characterizations

In this section, we characterize 1-connected graphs for which tr(G) = n — 2 and
bipartite graphs for which tr(G) = 2.

Notation 3.1. If H and K are two graphs, then the graph obtained by identifying one
center of H with one center of K is denoted by H * K and the graph obtained by joining
one center of H to one center of K is denoted by H e K.

Theorem 3.2. Let G be a 1-connected graph of order n > 4. Then tr(G) = n — 2 if and
only if GG is isomorphic to By, s > 1,t > 1 or 2Kz +eor Ky % K, s > 1,1t > 3 or
Ks+x Ky, t>3o0r Kge K4, 52> 3.

Proof: Let V(G) = {vi,va,...,0,}.

Assume that tr(G) = n — 2. Let W be a total resolving set of G.

Let vy be a cut vertex of G. Let C1,Cy, ..., C,, r > 2 be the components of G \ {v;}.
Then there are r branches at vy. Let By, Bs, ..., B, be such branches. First, we claim
that at most two branches contain a cycle. Suppose not. Let By, By, B3 be such branches.
By Observation 2.1, tr(By) < |By| — 1, tr(B2) < |B2| — 1 and tr(B;) < |Bs| — 1. Then
there exist v; € V(By), v; € V(Bsy) and v, € V(Bs), 4, j,k # 1 such that V(By) \ {v;},
V(Bs) \ {v;} and V(Bj3) \ {vi} are total resolving sets of By, By and Bj respectively.
Clearly, V(G) \ {v;, v;, v} is a total resolving set of G with cardinality n — 3, which is a
contradiction.

Thus at most two branches contain a cycle. We consider the following three cases.
Case 1: G is a tree.

First, we claim that G contains one or two exterior major vertices.
Suppose that G contains more than two exterior major vertices. Let v;,v; and vy be
such vertices. Let v}, v}

V(G) \ {vi, v}, vi} is a total resolving set of G with cardinality n — 3, which is a contra-

and v}, be the terminal vertices of v;, v; and vy, respectively. Then

diction. Thus G has one or two exterior major vertices. If G has exactly one exterior

major vertex, then we claim that G = B, t > 3. Clearly, v, is the exterior major vertex.
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Now, we claim that exactly one branch at v; is not K. Suppose at least two branches
are not Ky. Let B; and B, be such branches. Let v; and v; be the pendant vertices of
By and Bs respectively. Let vy, be the neighbor of v;. Then clearly, V(G) \ {v;, v, vi} is
a total resolving set with cardinality n — 3, which is a contradiction. Thus exactly one
branch at vy is not K. Let B; be such a branch. Then we claim that B; is P3. Suppose
that |By| =t > 4. Let X =V(B;) \ {v1}. Clearly, V(G) \ X is a total resolving set with
cardinality n — (¢ — 1), which is a contradiction. Hence G = By, t > 3. Similarly, we
can prove if G has exactly two exterior major vertices, then G = B, 4, s,t > 2.

Case 2 : One branch at v; contains a cycle.

Let B; be such a branch and V' (B;) = {v1, va,...,vs}. We consider the following two
subcases.

Subcase 2.1: |V(B))| =s > 4.

We claim that B; is complete and others are K5. Suppose B; is not complete. By
Theorem 2.2, tr(B;) < s — 2. Then there exist vy, v3 € V(By) such that V(By) \ {v2, v3}
is a total resolving set of B;. Let v, be a pendant vertex of G in By. Then clearly,
V(G) \ {v2,v3,v,} is a total resolving set of G with cardinality n — 3, which is a contra-
diction. Therfore By is complete. By Theorem 2.2, tr(By) = n — 1. Then there exists a
vertex vy € V(B1) such that V(By) \ {vs} is a total resolving set of By. Next, we claim
that By, Bs, ..., B, are Ks. First, we claim that G contains exactly one exterior major
vertex. If G' contains at least two exterior major vertices v; and vy, then let v} and vy,
be the terminal vertices of v; and vy, respectively. Clearly, V(G) \ {vs, v}, v;} is a total
resolving set of G with cardinality n — 3, which is a contradiction. Hence G contains
exactly one exterior major vertex.

Next, we claim that v; is the exterior major vertex. Suppose not. Clearly, r = 2 and
Bs contains exactly one exterior major vertex. Let v,, be the pendant vertex of By. Then
clearly, V(G) \ {v;,v1,v,} is a total resolving set of G with cardinality n — 3, which is a
contradiction. Hence v; is the exterior major vertex. Now, we claim that each B; is Kj.
Suppose not. Let By be such a branch and v, be a pendant vertex of By and v,,_1 be
its neighbor. Then clearly, V(G) \ {vs, vn—1,v,} is a total resolving set of G, which is a
contradiction. Thus B; is complete and others are Ky. Hence K; s * K;, s > 1 and ¢t > 3.
Subcase 2.2 : |V(B;)| = 3.

Then By is K3. Let V(B;) = {v1,v9,v3}. First, we claim that G contains exactly one
exterior major vertex. Suppose GG contains more than one exterior major vertex. Let v;

and v; be such exterior major vertices and v; and v} be the terminal vertices of v; and
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v; respectively. Then clearly, V(G) \ {vs, vj,v}} is a total resolving set with cardinality
n — 3, which is a contradiction. Thus G contains exactly one exterior major vertex. If vy
is the exterior major vertex, then we claim B; is K, for all 2 <7 < r.

Suppose not. Without loss of generality, let |By| > 3. Let v; be the pendant vertex
of By and v; be the neighbor of v;. Then V(G) \ {v;,v;,v3} is a total resolving set with
cardinality n — 3, which is a contradiction. Hence G = K ; * K3. If v1 is not the exterior
major vertex, then clearly, » = 2 and neighbor of v; in By is the exterior major vertex.
Let v; be the exterior major vertex. Then we claim d(v;, x) = 1 for all x € V(By) \ {v;}.
Suppose that d(v;,y) > 2 for some pendant vertex y € V(Bsy) \ {v;}. Let & be the neigh-
bor of y. Then V(G) \ {vs, z,y} is a total resolving set with cardinality n — 3, which is a
contradiction. Hence G = K3 e K4, s > 3.

Case 3 : Two branches at v; contain a cycle.

Let Bi, By be such branches. First we claim that » = 2. Suppose r > 3. Let Bs
be a tree branch and v; be a pendant vertex of Bs;. Then there exist v; € B; and
v, € By(j # k) such that V(G) \ {v;, vj, vi } is a total resolving set with cardinality n— 3,
which is a contradiction. Thus r = 2. Now, we claim that one branch is K35 and another
one is either complete or K7 + (K3 U K7). First we claim that either |V(Bj)| = 3 or
|V (Bs)| = 3. Suppose |V (B;)| > 4 and |V (By)| > 4. Let vy, v3 be the neighbors of v; and
vy € V(By), vs € V(By). Then clearly, V(G) \ {v1,v2,v3} is a total resolving set of G
with cardinality, n — 3, which is a contradiction. Thus either |V (By)| = 3 or |V (Bs)| = 3.
Without loss of generality, let |V(B;)| = 3 and hence By is K3. Let V(B;) = {vy, v2, v3}
and V(By) = {v1,v4,05,...,0,}. Then |V (By)| = n — 2. Next, we claim that By is either
complete or K7 + (K3 U K7). Suppose By is neither complete nor K7 + (K3 U K7). Since
By is not complete, tr(By) < n—4. Let V/(Bz) \ {vn_1,v,} be a total resolving set of Bs.
Clearly, V(G) \ {v2,vn_1,v,} is a total resolving set, which is a contradiction. Thus By
is either complete or K; + (K3 U K;). Hence K3 * K;, t > 3 or 2K3 + e.

The converse can be easily verified. [ |

Notation 3.3. Let ¢ be the collection of graphs G such that G is the union of two
distinct paths P : 129 ... 20, Py i y1ya. .. ys, 7 < s and 2191 € E(G), x;y; € E(G) for at

least one 7, 2 < i <.

Theorem 3.4. If G is a bipartite graph that is not a path, then ¢r(G) = 2 if and only
itGed.

Proof: Let V(G) = {v1,va,...,v,}. Then V(G) = SUT.
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Let tr(G) = 2 and W = {vy,v2} be a total resolving set of G. Let v; € S. Then vy € T
Let d be the diameter of G and (z, y) be the representation of any vertex. Then z ~ y < 1.
Since v; and vy are in distinct partite sets, d(u,v1) # d(u,ve) for all u € V(G) \ {v1, v2}
and hence z ~ y = 1. By Remark 2.3, |N;(W)| < 3, for all 1 <[ < d—1. But the possible
representations of the vertices of N;(W) are (I,1+ 1) and (I 4+ 1,1) forall 1 <[ <d — 1.
It follows that |N;(W)| < 2 for all 1 <[ < d — 1. Thus the possible representations of
the vertices of V(G) \ W are (1,2),(2,3),...,(d — 1,d) and (2,1),(3,2),...,(d,d — 1).
Let X ={(1,2),(2,3),...,(d—1,d)} and Y ={(2,1),(3,2),...,(d,d—1)}. We define
A={aeV(G)/r(aW)e X}and B={be V(G) /r(b|]W) € Y}. Therefore (AU {v,})
and (B U {wvy}) are paths in G. Then we can easily verify that G € ¢.

The converse can be easily verified. [ |

Open Problem 3.5. If G is a 2-connected graph of order n > 4, then characterize
graphs for which tr(G) =n — 2.

Open Problem 3.6. Characterize non-bipartite graphs for which tr(G) = 2.
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